zoukankan      html  css  js  c++  java
  • HDU6219/POJ1259 [ICPC2017沈阳]Empty Convex Polygons 最大空凸包

    Empty Convex Polygons

    Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 538    Accepted Submission(s): 138


    Problem Description
    Given a set of distinct points S on a plane, we define a convex hole to be a convex polygon having any of thegiven points as vertices and not containing any of the given points in its interior. In addition to the vertices, other given points may lie on the perimeter of the polygon. We want to find a convex hole as above forming the convexpolygon with the largest area.
     
    Input
    This problem has several test cases.
    The first line of input contains an integer t (1 ≤ t ≤ 100) indicating the total number of cases. For each test case,the first line contains the integer n (3 ≤ n ≤ 50). Each of the following n lines describes a point with two integers x and y where -1000 ≤ x, y ≤ 1000.
    We guarantee that there exists at least one non-degenerated convex polygon.
     
    Output
    For each test case, output the largest area of empty convex polygon, with the precision of 1 digit.
    Remark: The corollary of Pick’s theorem about the polygon with integer coordinates in that says the area of it iseither ends to .0 or .5.
     
    Sample Input
    4 3 0 0 1 0 0 1 5 0 0 1 0 2 0 0 1 1 1 5 0 0 3 0 4 1 3 5 -1 3 6 3 1 1 0 2 0 3 0 4 0 5 0
     
    Sample Output
    0.5 1.5 17.0 2.0
     
    求一个裸的最大空凸包,计算几何+DP真的要命...
    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    
    const int maxn=100;
    const double zero=1e-8;
    struct Vector
    {
     double x,y;
    };
    
    inline Vector operator -(Vector a,Vector b)
    {
        Vector c;
        c.x=a.x-b.x;
        c.y=a.y-b.y;
        return c;
    }
    
    inline double sqr(double a)
    {
     return a*a;
    }
    
    inline int Sign(double a)
    {
     if(fabs(a)<=zero)return 0;
     return a<0 ? -1:1;
    }
    
    inline bool operator <(Vector a,Vector b)
    {
     return Sign(b.y-a.y)>0||Sign(b.y-a.y)==0&&Sign(b.x-a.x)>0;
    
    }
    
    inline double Max(double a,double b)
    {
     return a>b ? a:b;
    }
    
    inline double Length(Vector a)
    {
     return sqrt(sqr(a.x)+sqr(a.y));
    }
    
    inline double Cross(Vector a,Vector b)
    {
     return a.x*b.y-a.y*b.x;
    }
    
    Vector dot[maxn],List[maxn];
    double opt[maxn][maxn];
    int seq[maxn];
    int n,len;
    double ans;
    
    bool Compare(Vector a,Vector b)
    {
     int temp=Sign(Cross(a,b));
     if (temp!=0)return temp>0;
     temp=Sign(Length(b)-Length(a));
     return temp>0;
    }
    
    void Solve(int vv)
    {
     int t,i,j,_len;
     for(int ii=len=0;ii<n;ii++)
        {
         if(dot[vv]<dot[ii])List[len++]=dot[ii]-dot[vv];
        }
     for(i=0;i<len;i++)
        for(j=0;j<len;j++)
            opt[i][j]=0;
     sort(List,List+len,Compare);
     double v;
     for(t=1;t<len;t++)
        {
         _len=0;
         for(i=t-1;i>=0&&Sign(Cross(List[t],List[i]))==0;i--);
         //cout<<i<<endl;
         while(i>=0)
            {
             v=Cross(List[i],List[t])/2.;
             seq[_len++]=i;
             for(j=i-1;j>=0&&Sign(Cross(List[i]-List[t],List[j]-List[t]))>0;j--);
             if(j>=0)v+=opt[i][j];
             ans=Max(ans,v);
             opt[t][i]=v;
             i=j;
            }
         for(i=_len-2;i>=0;i--)
            opt[t][seq[i]]=Max(opt[t][seq[i]],opt[t][seq[i+1]]);
        }
    }
    
    int i;
    double Empty()
    {
     ans=0;
     for(i=0;i<n;i++)
        Solve(i);
     return ans;
    }
    int main()
    {//freopen("t.txt","r",stdin);
     int T;
     scanf("%d",&T);
     while(T--)
        {
         scanf("%d",&n);
         for(int i=0;i<n;i++)
            scanf("%lf%lf",&dot[i].x,&dot[i].y);
         printf("%.1lf
    ",Empty());
        }
     return 0;
    }
  • 相关阅读:
    UiPath鼠标操作文本的介绍和使用
    UiPath鼠标操作元素的介绍和使用
    UiPath循环活动Do While的介绍和使用
    UiPath循环活动Do While的介绍和使用
    UiPath循环活动While的介绍和使用
    设计模式之: Decorator(装饰器)模式
    C语言深度解剖读书笔记(1.关键字的秘密)
    HDU 4341 Gold miner (分组背包)
    HDU 3496 Watch The Movie( 二维费用背包)
    Mahout源码MeanShiftCanopyDriver分析之一初识
  • 原文地址:https://www.cnblogs.com/mizersy/p/9524324.html
Copyright © 2011-2022 走看看