zoukankan      html  css  js  c++  java
  • POJ 2084 Catalan

    Game of Connections
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 8772   Accepted: 4324

    Description

    This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, . . . , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another. 
    And, no two segments are allowed to intersect. 
    It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?

    Input

    Each line of the input file will be a single positive number n, except the last line, which is a number -1. 
    You may assume that 1 <= n <= 100.

    Output

    For each n, print in a single line the number of ways to connect the 2n numbers into pairs.

    Sample Input

    2
    3
    -1

    Sample Output

    2
    5

    Source

    PS:卡特兰数在ACM中比较具体的使用例子有,1括号匹配的种数。2在栈中的自然数出栈的种数。3求多边形内三角形的个数。4,n个数围城圆圈,找不相交线段的个数。5给定n个数,求组成二叉树的种数,本题为第四种。
      h(n)=(4*n-2)/(n+1)*h(n-1).
    代码:
     1 import java.math.*;
     2 import java.util.*;
     3 public class Main {
     4 public static void main(String[] args) {
     5         Scanner cin=new Scanner(System.in);
     6         int t;
     7         BigInteger f[]=new BigInteger[1005];
     8         f[1]=BigInteger.valueOf(1);
     9         f[2]=BigInteger.valueOf(2);
    10         f[3]=BigInteger.valueOf(5);
    11         for(int i=4;i<=100;i++){
    12             BigInteger a=BigInteger.valueOf(4*i-2);
    13             BigInteger b=BigInteger.valueOf(i+1);
    14             f[i]=a.multiply(f[i-1]).divide(b);
    15         }
    16         while(cin.hasNextInt())
    17         {
    18             t=cin.nextInt();
    19             if(t==-1) break;
    20             System.out.println(f[t]);
    21         }
    22 }
    23 }
     
  • 相关阅读:
    【卷积】卷积的理解
    【cs231n】神经网络学习笔记3
    【cs231n】神经网络笔记笔记2
    【cs231n】神经网络学习笔记1
    【cs231n】卷积神经网络
    【cs231n】反向传播笔记
    【cs231n】最优化笔记
    【cs231n】图像分类笔记
    【cs231n】线性分类笔记
    关于struts中Ognl和iterator配合再次理解
  • 原文地址:https://www.cnblogs.com/mj-liylho/p/8004794.html
Copyright © 2011-2022 走看看