zoukankan      html  css  js  c++  java
  • POJ 2891 中国剩余定理(不互素)

    Strange Way to Express Integers
    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 17877   Accepted: 6021

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    Source

    题意:n模k个不同的数,得到相应的余数,求最小的n。 
    PS:一般的CRT用来解决模数互素的情况,本题不一定模数互素,因此,一般的中国剩余定理模板是不够的。 
    代码:
     1 #include "bits/stdc++.h"
     2 #define db double
     3 #define ll long long
     4 //#define vec vector<ll>
     5 #define Mt  vector<vec>
     6 #define ci(x) scanf("%d",&x)
     7 #define cd(x) scanf("%lf",&x)
     8 #define cl(x) scanf("%lld",&x)
     9 #define pi(x) printf("%d
    ",x)
    10 #define pd(x) printf("%f
    ",x)
    11 #define pl(x) printf("%lld
    ",x)
    12 #define inf 0x3f3f3f3f
    13 #define rep(i, x, y) for(int i=x;i<=y;i++)
    14 const int N   = 1e6 + 5;
    15 const int mod = 1e9 + 7;
    16 const int MOD = mod - 1;
    17 const db  eps = 1e-10;
    18 const db  PI  = acos(-1.0);
    19 using namespace std;
    20 typedef pair<ll,ll> pll;
    21 ll a[N],b[N],m[N];
    22 ll gcd(ll x,ll y) {return y==0?x:gcd(y,x%y);}
    23 ll ex_gcd(ll a,ll b,ll& x,ll& y)
    24 {
    25     if(b==0){
    26         x = 1,y = 0;
    27         return a;
    28     }
    29     ll d = ex_gcd(b,a%b,y,x);
    30     y -= a/b*x;
    31     return d;
    32 }
    33 
    34 ll inv(ll a,ll p)
    35 {
    36     ll d,x,y;
    37     d = ex_gcd(a,p,x,y);
    38     return d==1?(x%p+p)%p:-1;
    39 }
    40 pll CRT(ll A[], ll B[], ll M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组
    41     ll x = 0, m = 1;
    42     for(int i = 0; i < n; i ++) {
    43         ll a = A[i] * m, b = B[i] - A[i]*x, d = gcd(M[i], a);
    44         if(b % d != 0)  return pll(0, -1);//答案不存在,返回-1
    45         ll t = b/d * inv(a/d, M[i]/d)%(M[i]/d);
    46         x = x + m*t;
    47         m *= M[i]/d;
    48     }
    49     x = (x % m + m ) % m;
    50     return pll(x, m);//返回的x就是答案,m是最后的lcm值
    51 }
    52 
    53 int main()
    54 {
    55     int k;
    56     while(~scanf("%d",&k))
    57     {
    58         for(int i=0;i<k;i++)
    59         {
    60             a[i] = 1;
    61             scanf("%lld%lld",&m[i],&b[i]);
    62         }
    63         pll ans = CRT(a,b,m,k);
    64         if(ans.second==-1) puts("-1");
    65         else    pl(ans.first);
    66     }
    67 }
  • 相关阅读:
    SpringMVC07处理器方法的返回值
    html01基本标签
    java09数组的使用
    SpringMVC06以对象的方式获取前台的数据
    面向对象的程序设计(五)借用构造函数继承
    面向对象的程序设计(四)原型链继承
    面向对象的程序设计(三)对象字面量创建原型方法与直接创建原型方法的区别
    面向对象的程序设计(二)理解各种方法和属性typeof、instanceof、constructor、prototype、__proto__、isPrototypeOf、hasOwnProperty
    面向对象的程序设计(一)创建对象的各种方法
    二叉树的层次遍历
  • 原文地址:https://www.cnblogs.com/mj-liylho/p/8406458.html
Copyright © 2011-2022 走看看