zoukankan      html  css  js  c++  java
  • 矩形排样问题 遗传算法解决方案

    最近在实习中,遇到了一个实际问题。客户要将若干大小不一的小矩形,排到大矩形上,而且还要求可以设置小矩形之间的间距,和大矩形的margin值,便于裁切。

    排样问题是一个经典的NP问题,有很多解决方案。神经网络、遗传、蚁群、模拟退火等等算法都可以解决这个问题。对于一些行业的工业生产,很多生产数据并没有测试数据那般刁钻,所以这些算法基本都能满足生产的需要。

    在这里,我主要参考了一篇郑州大学的研究生毕业论文,自己又稍加了修改,用遗传算法解决了这个问题。

    遗传算法的本质其实就是把问题简化为一个个序列,根据一定规律随机生成后,拿这个编码序列贪心的得出解,然后不断的迭代,优胜劣汰,向最优解靠拢。

    我认为遗传算法有几个关键之处:编码规则、初始种群的选取、贪心方式、适应度函数的选择、变异规则。

    1.好的编码规则能便于程序的实现,同时也决定了程序的贪心结构,在这里,我的编码是1-n的阿拉伯数字,代表放入的矩形的编号,从左到右是放入的顺序。如果矩形需要旋转,则为负数。

    2.初始种群的选取,给矩形按照权值排序,权值=0.9*矩形面积+0.1*矩形长宽比,大的先放,小的后放,然后随机其正负值,生成初始种群,好的初始种群能很快就找到最优解。

    3.我的贪心解决方案就是最低水平线算法,从左到右,从下到上,不断的寻找能放入的点。每次放入一个新点后,把未来的矩形可能的存在的点加入一个有序的序列中,后面的待排矩形就在这个序列里寻找可以放的点。

    4.适应度函数,两个个体好坏的决定因素,在这里,我设置了3个决定因素,首先是放入的矩形面积占待放入的矩形面积的百分比,第二个是当前排入的矩形的最大高度,第三个是排入矩形的整齐程度(高的种类个数)。我还有一些新想法,比如比较新图形的重心,重心越靠左下约好,能避免一些相同适应值下的非最优解。

    5.变异规则,这里用了4种变异方案,交叉、单点。。。。。。不详述了。

    这里我把算法封装到了类里


    #ifndef LAYOUTALGORYTHM_H
    #define LAYOUTALGORYTHM_H

    #include <iostream>
    #include <stdio.h>
    #include <math.h>
    #include <stdlib.h>
    #include <string>
    #include <string.h>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <stack>
    #include <QDebug>
    using namespace std;
    #include "layoutalgorythmglobal.h"

    class LayoutAlgorythm;
    struct MyPoint{
    double x,y;
    MyPoint(){}
    MyPoint(double ix,double iy){
    x=ix;
    y=iy;
    }
    friend bool operator<(const MyPoint&a ,const MyPoint &b){
    //按照y值排序,y相等时按照x排
    if(a.y==b.y)return a.x<b.x;
    else return a.y<b.y;
    }
    };

    struct MyRect{
    double width,height,S;
    double ratio;
    int index;
    MyRect(){}
    MyRect(double iWidth,double iHeight,int iIndex){
    width=iWidth;
    height=iHeight;
    S=iWidth*iHeight;
    ratio=max(height/width,width/height);
    index=iIndex;
    }
    MyRect(double iWidth,double iHeight){
    width=iWidth;
    height=iHeight;
    S=iWidth*iHeight;
    ratio=max(height/width,width/height);
    }
    friend bool operator<(const MyRect &iRectA , const MyRect &iRectB){
    double PriorityA=LayoutAlgorythmGlobal::m_weightArea*iRectA.S+LayoutAlgorythmGlobal::m_weightRatio*iRectA.ratio;
    double PriorityB=LayoutAlgorythmGlobal::m_weightArea*iRectB.S+LayoutAlgorythmGlobal::m_weightRatio*iRectB.ratio;
    return PriorityA>PriorityB;
    //大的靠前
    //Priority=WeightArea*R[i].S+WeightRatio*R[i].(L/W)
    }
    };

    struct Individual
    {
    int m_order[100];//顺序,有正负,没有0
    MyPoint m_position[100];//每个矩形的左下角位置
    double m_val[3];//插入的面积,最高的水平线,获得的高度种类个数
    Individual(){}
    friend bool operator<(const Individual&iIndiA ,const Individual &iIndiB){
    if(iIndiA.m_val[0]==iIndiB.m_val[0]){
    if(iIndiA.m_val[1]==iIndiB.m_val[1]){
    return iIndiA.m_val[2]<iIndiB.m_val[2];//高度种类越小越好
    }
    else return iIndiA.m_val[1]<iIndiB.m_val[1];//最高水平线越小越好
    }
    else{
    return iIndiA.m_val[0]>iIndiB.m_val[0];//插入的面积越大越好
    }
    }
    };

    class LayoutAlgorythm
    {
    public:
    void setBigRect(const double iW,const double iH);
    void setGap(const double iGap);
    double getGap();
    void setMargin(const double iMargin);
    double getMargin();
    void addRect(const double iW,const double iH,const int index);
    void setRect(int position,MyRect iRect);
    MyRect getRect(int position);
    void dealWithGapMargin();
    void solve();
    void setRectsNum(int n);
    int getRectsNum();
    Individual getResult();
    LayoutAlgorythm(){}
    private:
    //最低水平线算法,by Shijing
    double m_totalS=0;
    int m_num=0;//num_of_small_rect
    Individual m_population[120];
    MyRect m_rects[100];//第0个是container
    double m_gap=0;//矩形之间的间距
    double m_margin=0;//与边框的间距
    void initialize();//生成初始种群按照排序规则初始化后存到population里,并更新fitness值
    int* randPerm(int N);//生成N个不同的1-N的随机数
    void fitness(Individual &myIndi);
    void crossOne(const Individual iFirst,const Individual iSecond, Individual &oFirst, Individual &oSecond);//单点交叉
    void crossTwo(const Individual iFirst,const Individual iSecond, Individual &oFirst, Individual &oSecond);//双点交叉
    void changePosition(const Individual input,Individual &output);//位置变异
    void changeRotate(const Individual input,Individual &output);//旋转变异
    };







    struct randnum
    {
    int index;
    int v;
    friend bool operator<(const randnum&a,const randnum&b){
    return a.v<b.v;
    }
    };


    #endif // LayoutAlgorythm_H



    #ifndef LAYOUTALGORYTHMGLOBAL_H
    #define LAYOUTALGORYTHMGLOBAL_H


    class LayoutAlgorythmGlobal
    {
    public:
    static double m_weightArea;//矩形排序,面积权重
    static double m_weightRatio;//矩形排序,长宽比权重
    const static int m_members;//种群规模
    const static int m_maxSize;//小矩形个数
    static int m_iterCount;//最大迭代次数
    static double m_pc1;//单点交叉概率
    static double m_pc2;//两点交叉概率
    static double m_pm1;//两点交换变异概率
    static double m_pm2;//单点旋转变异概率
    LayoutAlgorythmGlobal();
    };

    #endif // LAYOUTALGORYTHMGLOBAL_H


    后面,就是实现这些东西了

     

    这里的solve,相当于主函数了,排序后留下的第一个,就是最优解了:

    void LayoutAlgorythm::solve()
    {
    //随机将前M个两两配对,产生后M个新个体,再排序,迭代50次
    this->initialize();
    int members=LayoutAlgorythmGlobal::m_members;
    double Pc1=LayoutAlgorythmGlobal::m_pc1;
    double Pc2=LayoutAlgorythmGlobal::m_pc2;
    double Pm1=LayoutAlgorythmGlobal::m_pm1;
    double Pm2=LayoutAlgorythmGlobal::m_pm2;
    for(int i=0;i<LayoutAlgorythmGlobal::m_iterCount;i++){
    int operationP=members;
    for(int j=0;j<(int)(Pc1*members);j+=2){
    crossOne(m_population[rand()%members],m_population[rand()%members],m_population[operationP],m_population[operationP+1]);
    operationP+=2;
    }

    for(int j=0;j<(int)(Pc2*members);j+=2){
    crossTwo(m_population[rand()%members],m_population[rand()%members],m_population[operationP],m_population[operationP+1]);
    operationP+=2;
    }
    for(int j=0;j<(int)(Pm1*members);j++){
    changePosition(m_population[rand()%members],m_population[operationP++]);
    }

    for(int j=0;j<(int)(Pm2*members);j++){
    changeRotate(m_population[rand()%members],m_population[operationP++]);
    }
    sort(m_population,m_population+2*members);
    }
    }



    原文链接:https://blog.csdn.net/qdbszsj/article/details/69236950

  • 相关阅读:
    Notes on <High Performance MySQL> Ch5: Advanced MySQL Feature
    Differences between DATA_OBJECT_ID and OBJECT_ID
    [转载]Oracle Character set – Everything a New oracle DBA needs to know
    Write CLOB into HTML file
    Windows bat RMDIR command
    ORA01795: maximum number of expressions in a list is 1000
    Preliminary MySQL Study Notes
    Notes on <High Performance MySQL> Ch13: MySQL Server Status
    How To Convert Number into Words using Oracle SQL Query
    "Execute Immediate" in Java
  • 原文地址:https://www.cnblogs.com/mjgw/p/12446626.html
Copyright © 2011-2022 走看看