zoukankan      html  css  js  c++  java
  • Graph I

    Graph

    There are two standard ways to represent a graph G=(V,E)G=(V,E), where VV is a set of vertices and EE is a set of edges; Adjacency list representation and Adjacency matrix representation.

    An adjacency-list representation consists of an array Adj[|V|]Adj[|V|] of |V||V| lists, one for each vertex in VV. For each uVu∈V, the adjacency list Adj[u]Adj[u] contains all vertices vv such that there is an edge (u,v)E(u,v)∈E. That is, Adj[u]Adj[u] consists of all vertices adjacent to uu in GG.

    An adjacency-matrix representation consists of |V|×|V||V|×|V| matrix A=aijA=aij such that aij=1aij=1 if (i,j)E(i,j)∈E, aij=0aij=0 otherwise.

    Write a program which reads a directed graph GG represented by the adjacency list, and prints its adjacency-matrix representation. GG consists of n(=|V|)n(=|V|) vertices identified by their IDs 1,2,..,n1,2,..,nrespectively.

    Input

    In the first line, an integer nn is given. In the next nn lines, an adjacency list Adj[u]Adj[u] for vertex uu are given in the following format:

    ukv1v1 v2v2 ... vkvk

    uu is vertex ID and kk denotes its degree. vivi are IDs of vertices adjacent to uu.

    Output

    As shown in the following sample output, print the adjacent-matrix representation of GG. Put a single space character between aijaij.

    Constraints

    • 1n1001≤n≤100

    Sample Input

    4
    1 2 2 4
    2 1 4
    3 0
    4 1 3
    

    Sample Output

    0 1 0 1
    0 0 0 1
    0 0 0 0
    0 0 1 0

    #include <iostream>
    using namespace std;
    const int N = 100;
    
    int main()
    {
    	int M[N][N];	// 0 0起点的邻接矩阵
    	int n, u, k, v;
    	
    	cin >> n;
    	for(int i = 0; i < n; ++ i)
    	{
    		for(int j = 0; j < n; ++ j)
    		{
    			M[i][j] = 0;
    		}
    	} 
    	
    	for(int i = 0; i < n; ++ i)
    	{
    		cin >> u >> k;
    		u --;	// 转换为0起点 
    		for(int j = 0; j < k; ++ j)
    		{
    			cin >> v;
    			v --;	// 转换为0起点 
    			M[u][v] = 1;	// 在u和v之间画出一条边 
    		}
    	}
    	
    	for(int i = 0; i < n; ++ i)
    	{
    		for(int j = 0; j < n; ++ j)
    		{
    			if(j)	cout << " ";
    			cout << M[i][j];
    		}
    		cout << endl;
    	}
    	
    	return 0;
    } 
    

      

  • 相关阅读:
    至少有K个重复字符的最长字串 分治法+递归
    旋转数组
    旋转链表 指针移动
    通过删除字母匹配到字典里最长的单词
    How to fix yum after CentOS 6 went EOL
    Centos6 yum源配置(CentOS 6停止更新)
    ORACLE 12C R2 RAC 安装配置指南
    Background Processes Specific to Oracle RAC
    如何缩小 Oracle 数据库中的临时表空间
    Script To Get Tablespace Utilization In Oracle Database 12c
  • 原文地址:https://www.cnblogs.com/mjn1/p/10796757.html
Copyright © 2011-2022 走看看