D. Little Elephant and Broken Sorting
题意:
长度为n的序列,m次操作,每次交换两个位置,每次操作的概率为$frac{1}{2}$,求m此操作后逆序对的期望。
分析:
f[i][j]表示i>i的概率,每次交换的概率为$frac{1}{2}$,设交换的位置是x,y,那么$f[i][x]=frac{f[i][x]+f[i][y]}{2}$,分别是不交换和交换后的概率的和除以2。
代码:
1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 #include<iostream> 5 #include<cmath> 6 #include<cctype> 7 #include<set> 8 #include<queue> 9 #include<vector> 10 #include<map> 11 using namespace std; 12 typedef long long LL; 13 14 inline int read() { 15 int x=0,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1; 16 for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';return x*f; 17 } 18 19 const int N = 1005; 20 double f[N][N]; 21 int a[N]; 22 23 int main() { 24 int n = read(), m = read(); 25 for (int i = 1; i <= n; ++i) a[i] = read(); 26 for (int i = 1; i <= n; ++i) 27 for (int j = i + 1; j <= n; ++j) 28 f[i][j] = a[i] > a[j], f[j][i] = a[j] > a[i]; 29 while (m --) { 30 int x = read(), y = read(); 31 if (x == y) continue; 32 for (int i = 1; i <= n; ++i) { 33 if (i == x || i == y) continue; 34 f[i][x] = f[i][y] = (f[i][x] + f[i][y]) / 2.0; 35 f[x][i] = f[y][i] = (f[x][i] + f[y][i]) / 2.0; 36 } 37 f[x][y] = f[y][x] = 0.5; 38 } 39 double ans = 0; 40 for (int i = 1; i <= n; ++i) 41 for (int j = i + 1; j <= n; ++j) ans += f[i][j]; 42 printf("%.10lf",ans); 43 return 0; 44 }