zoukankan      html  css  js  c++  java
  • P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格

    链接

    分析:

    $ prodlimits_{i = 1}^{n} prodlimits_{j = 1}^{m} f[gcd(i, j)]$

    $=prodlimits_{d = 1}^{min(n, m)} prodlimits_{i = 1}^{n} prodlimits_{j = 1}^{m} [gcd(i, j) = d] imes f[d]$

    $=prodlimits_{d = 1}^{min(n, m)} f[d] ^ {sumlimits_{i = 1}^{n} sumlimits_{j = 1}^{m} [gcd(i, j) = d]}$

    $=prodlimits_{d = 1}^{min(n, m)} f[d] ^ {sumlimits_{k = 1}^{min( frac{n}{d} , frac{m}{d} )} mu(k) frac{n}{kd} frac{m}{kd}}$

    设$T=kd$

    $prodlimits_{T = 1} ^ {min(n, m)} (prodlimits_{d | T} f[d] ^ {mu(frac{T}{d}) } ) ^ {frac{n}{T} frac{m}{T} }$

    对中间的部分$nlogn$预处理,$O(sqrt n)$处理每个询问。

    代码:

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<iostream>
    #include<cmath>
    #include<cctype>
    #include<set>
    #include<queue>
    #include<vector>
    #include<map>
    using namespace std;
    typedef long long LL;
    
    inline int read() {
        int x=0,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
        for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';return x*f;
    }
    
    const int N = 2000005, mod = 1e9 + 7;
    int mu[N], pri[N], f[N], g1[N], g2[N], inv1[N], inv2[N];
    bool nopri[N];
    
    int ksm(int a,LL b) {
        register int res = 1;
        while (b) {
            if (b & 1) res = 1ll * res * a % mod;
            a = 1ll * a * a % mod;
            b >>= 1;
        }
        return res % mod;
    }
    void init(int n) {
        nopri[1] = true; mu[1] = 1;
        int tot = 0;
        for (int i = 2; i <= n; ++i) {
            if (!nopri[i]) pri[++tot] = i, mu[i] = -1;
            for (register int j = 1; j <= tot && pri[j] * i <= n; ++j) {
                nopri[pri[j] * i] = 1; 
                if (i % pri[j] == 0) { mu[i * pri[j]] = 0; break; }
                mu[pri[j] * i] = -mu[i];
            }
        }
        f[0] = 0, f[1] = 1; g1[1] = g2[1] = 1;
        for (register int i = 2; i <= n; ++i) f[i] = (f[i - 1] + f[i - 2]) % mod, g1[i] = g2[i] = 1;
        for (int i = 1; i <= n; ++i) 
            for (int j = i; j <= n; j += i) {
                if (mu[j / i] == 0) continue;
                else if (mu[j / i] == 1) g1[j] = 1ll * g1[j] * f[i] % mod;
                else g2[j] = 1ll * g2[j] * f[i] % mod;
            }
        g1[0] = g2[0] = inv1[0] = inv2[0] = 1;
        for (int i = 1; i <= n; ++i) {
            g1[i] = 1ll * g1[i] * g1[i - 1] % mod,
            g2[i] = 1ll * g2[i] * g2[i - 1] % mod;
            inv1[i] = ksm(g1[i], mod - 2);
            inv2[i] = ksm(g2[i], mod - 2);
        }
    }
    void solve() {
        int n = read(), m = read(), nm = min(n, m), pos = 0, ans = 1;
        for (int t1, t2, i = 1; i <= nm; i = pos + 1) {
            pos = min(n / (n / i), m / (m / i));
            LL t = 1ll * (n / i) * (m / i); // !!!
            t1 = 1ll * g1[pos] * inv1[i - 1] % mod; 
            t2 = 1ll * g2[pos] * inv2[i - 1] % mod;
            ans = 1ll * ans * ksm(t1, t) % mod * ksm(ksm(t2, t), mod - 2) % mod;
        }
        cout << ans << "
    ";
    }
    int main() {
        init(1000000);
        for (int T = read(); T --; solve());
        return 0;
    }
  • 相关阅读:
    golang zip 压缩,解压(含目录文件)
    c3p0参数详解
    golang协程——通道channel阻塞
    乔恩与加菲猫引发的思考
    部署bugzilla(bugzilla+apache+mysql+linux)
    新的篇章
    SQL基础2
    SQL基础1
    引用
    const 对象默认为文件的局部变量
  • 原文地址:https://www.cnblogs.com/mjtcn/p/10372069.html
Copyright © 2011-2022 走看看