抽卡大赛
分析:
$O(n^4)$的做法比较好想,枚举第i个人选第j个,然后背包一下,求出有k个比他大的概率。
优化:
第i个人,选择一张卡片,第j个人选的卡片大于第i个人的概率是$p_j$,那么答案的生成函数是:
$prod limits _{j = 1}^{n} [j != i]((1 - p_j) + p_jx)$
那么可以将所有人选的卡片按A排序,每次移动,只有一个多项式发生改变,改变的只有一个人,每个人只有一个长度为2的多项式,乘和除都可以做到$O(n)$。
代码:
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #include<cctype> #include<cmath> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> using namespace std; typedef long long LL; inline int read() { int x=0,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1; for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';return x*f; } const int N = 205, mod = 1e9 + 7, inv100 = 570000004; struct Node { int A, G, P, id; } a[N * N]; bool operator < (const Node& x,const Node &y) { return x.A > y.A; } int f[N], v[N], sump[N], ans[N], n; int ksm(int a,int b) { int res = 1; while (b) { if (b & 1) res = 1ll * res * a % mod; a = 1ll * a * a % mod; b >>= 1; } return res; } void Div(int p) { int inv = ksm(1 - p, mod - 2); f[0] = 1ll * f[0] * inv % mod; for (int i = 1; i < n; ++i) f[i] = 1ll * (f[i] - 1ll * p * f[i - 1] % mod) * inv % mod; } void Mul(int p) { for (int i = n - 1; i >= 0; --i) f[i] = (1ll * f[i] * (mod + 1 - p) % mod + 1ll * f[i - 1] * p % mod) % mod; } int main() { n = read();int cnt = 0; for (int i = 1; i <= n; ++i) { int m = read(), sum = 0; for (int j = 1; j <= m; ++j) { a[++cnt].id = i; a[cnt].A = read(), a[cnt].G = read(), a[cnt].P = read(); sum += a[cnt].P; a[cnt].G = 1ll * (100 - a[cnt].G) * inv100 % mod; } for (int j = 0; j < m; ++j) a[cnt - j].P = 1ll * a[cnt - j].P * ksm(sum, mod - 2) % mod; } for (int i = 0; i < n; ++i) v[i] = read(); sort(a + 1, a + cnt + 1); f[0] = 1; for (int i = 1; i <= cnt; ++i) { if (a[i].id != a[i - 1].id) { Div(sump[a[i].id]); Mul(sump[a[i - 1].id]); } for (int j = 0; j < n; ++j) ans[a[i].id] = (ans[a[i].id] + 1ll * f[j] * v[j] % mod * a[i].P % mod * a[i].G) % mod; sump[a[i].id] = (sump[a[i].id] + a[i].P) % mod; } for (int i = 1; i <= n; ++i) printf("%d ", (ans[i] + mod) % mod); return 0; }