zoukankan      html  css  js  c++  java
  • P2858 [USACO06FEB]奶牛零食Treats for the Cows

     P2858 [USACO06FEB]奶牛零食Treats for the Cows

    题目描述

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

    The treats are interesting for many reasons:The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.Like fine wines and delicious cheeses, the treats improve with age and command greater prices.The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

    The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

    约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:

    •零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每

    天可以从盒子的任一端取出最外面的一个.

    •与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.

    •每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).

    •第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.

    Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.

    输入输出格式

    输入格式:

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains the value of treat v(i)

    输出格式:

    Line 1: The maximum revenue FJ can achieve by selling the treats

    输入输出样例

    输入样例#1:
    5
    1
    3
    1
    5
    2
    输出样例#1:
    43

    说明

    Explanation of the sample:

    Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

    FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

    f[i][j]  表示零食从左边卖到了第 i 个,从右边卖到了第 j 个时的最大价钱;

    dp转移方程,

    f[i][j] = max(f[i+1][j]+v[i]*(n-j+i),f[i][j-1]+v[j]*(n-j+i));
     1 #include<cstdio>
     2 #include<algorithm>
     3 
     4 using namespace std;
     5 const int N = 2010;
     6 int f[N][N],v[N],n;
     7 
     8 int main()
     9 {
    10     scanf("%d",&n);
    11     for (int i=1; i<=n; ++i)
    12         scanf("%d",&v[i]);
    13     for (int i=n; i>=1; --i)
    14         for (int j=i; j<=n; ++j)
    15             f[i][j] = max(f[i+1][j]+v[i]*(n-j+i),f[i][j-1]+v[j]*(n-j+i));
    16     printf("%d",f[1][n]);
    17     return 0;
    18 } 
  • 相关阅读:
    结合中断上下文切换和进程上下文切换分析Linux内核的一般执行过程
    深入理解系统调用
    基于mykernel2.0编写一个操作系统内核
    如何评测一个软件工程师的计算机网络知识水平与网络编程技能水平?
    如何评测软件工程知识技能水平?
    深入理解TCP协议及其源代码
    Socket与系统调用深度分析
    创新产品的需求分析:未来的图书会是什么样子?
    构建调试Linux内核网络代码的环境MenuOS系统
    解决npm ERR! code ELIFECYCLE npm ERR! errno 1问题
  • 原文地址:https://www.cnblogs.com/mjtcn/p/7016403.html
Copyright © 2011-2022 走看看