Intervals
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4292 Accepted Submission(s):
1624
Problem Description
You are given n closed, integer intervals [ai, bi] and
n integers c1, ..., cn.
Write a program that:
> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,
> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,
> writes the answer to the standard output
Write a program that:
> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,
> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,
> writes the answer to the standard output
Input
The first line of the input contains an integer n (1
<= n <= 50 000) - the number of intervals. The following n lines describe
the intervals. The i+1-th line of the input contains three integers ai, bi and
ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and
1 <= ci <= bi - ai + 1.
Process to the end of file.
Process to the end of file.
Output
The output contains exactly one integer equal to the
minimal size of set Z sharing at least ci elements with interval [ai, bi], for
each i = 1, 2, ..., n.
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Output
6
Author
1384
需要求S[r]-S[l-1]>=ans,即S[l-1]-S[r]<=-ans。若以r为起点 ,而-ans就为r到l-1的最短路径,即-dist[Maxl-1]。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include<algorithm> 5 #define MAXN 50100 6 using namespace std; 7 8 struct Edge{ 9 int to,nxt,w; 10 }e[MAXN<<2]; 11 int dis[MAXN],head[MAXN]; 12 bool vis[MAXN]; 13 int cnt,n,l,r; 14 queue<int>q; 15 16 void init() 17 { 18 memset(head,0,sizeof(head)); 19 cnt = 0; 20 l = 50100; 21 r = 0; 22 } 23 void add(int u,int v,int w) 24 { 25 ++cnt; 26 e[cnt].w = w; 27 e[cnt].to = v; 28 e[cnt].nxt = head[u]; 29 head[u] = cnt; 30 } 31 void spfa() 32 { 33 memset(dis,0x3f,sizeof(dis)); 34 memset(vis,false,sizeof(vis)); 35 q.push(r); 36 vis[r] = true; 37 dis[r] = 0; 38 while (!q.empty()) 39 { 40 int u = q.front(); 41 q.pop(); 42 for (int i=head[u]; i; i=e[i].nxt) 43 { 44 int v = e[i].to; 45 int w = e[i].w; 46 if (dis[v]>dis[u]+w) 47 { 48 dis[v] = dis[u]+w; 49 if (!vis[v]) 50 { 51 vis[v] = true; 52 q.push(v); 53 } 54 } 55 } 56 vis[u] = false ; 57 } 58 printf("%d ",-dis[l-1]); 59 } 60 int main() 61 { 62 while (scanf("%d",&n)!=EOF) 63 { 64 init() 65 for (int a,b,c,i=1; i<=n; ++i) 66 { 67 scanf("%d%d%d",&a,&b,&c); 68 l = min(l,a); 69 r = max(r,b); 70 add(b,a-1,-c); //b-(a-1)>=c 71 } 72 for (int i=l; i<=r; ++i) 73 { 74 add(i,i-1,0); //i-(i-1)>=0 75 add(i-1,i,1); //i-(i-1)<=1 76 } 77 spfa(); 78 } 79 return 0; 80 }