zoukankan      html  css  js  c++  java
  • HDU 3507 Print Article(斜率优化)

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 15536    Accepted Submission(s): 4813


    Problem Description

    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     

    Input

    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     

    Output

    A single number, meaning the mininum cost to print the article.
     

    Sample Input

    5 5 5 9 5 7 5
     

    Sample Output

    230
     

    题意

    给出n个数,可以分成任意连续的段,每段的花费是这段内的数字和的平方,加m(定值),求最小花费。

    code

     1 #include<cstdio>
     2 #include<algorithm>
     3 
     4 using namespace std;
     5 
     6 const int N = 500100;
     7 const int INF = 1e9;
     8 typedef long long LL;
     9 LL s[N],f[N];
    10 int q[N];
    11 
    12 int Slope(int j,int k) {
    13     if (s[j]==s[k]) 
    14         if (f[j] > f[k]) return -INF;
    15         else return INF;
    16     return ((f[j]+s[j]*s[j])-(f[k]+s[k]*s[k]))/(2*s[j]-2*s[k]);
    17 }
    18 
    19 int main() {
    20     int n,m;
    21     while (~scanf("%d%d",&n,&m)) {
    22         for (int i=1; i<=n; ++i) {
    23             scanf("%lld",&s[i]);s[i] += s[i-1];
    24         }
    25         int L = 0,R = 0;
    26         for (int i=1; i<=n; ++i) {
    27             while (L<R && Slope(q[L+1],q[L])<s[i]) L++;
    28             int j = q[L];
    29             f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j])+m;
    30             while (L<R && Slope(q[R],q[R-1])>Slope(i,q[R])) R--;
    31             q[++R] = i;
    32         }
    33         printf("%lld
    ",f[n]);
    34     }
    35     return 0;
    36 }

    参考:

    斜率优化

    http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html

    http://www.cnblogs.com/xiaolongchase/archive/2012/02/10/2344769.html

  • 相关阅读:
    【HDU6609】Find the answer【线段树】
    【HDU6602】Longest Subarray【线段树+分治】
    PCIe
    NVMe Windows 支持情况
    PCIe/NVMe Soft Protocol Analyzer
    I am coming..
    hibernate自动建表技术_采用数据库反向生成技术
    struts2的执行流程
    oracle中scott用户下四个基本表SQL语句练习
    SQL语句中的having和where的区别
  • 原文地址:https://www.cnblogs.com/mjtcn/p/8537341.html
Copyright © 2011-2022 走看看