zoukankan      html  css  js  c++  java
  • HDU 3507 Print Article(斜率优化)

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 15536    Accepted Submission(s): 4813


    Problem Description

    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     

    Input

    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     

    Output

    A single number, meaning the mininum cost to print the article.
     

    Sample Input

    5 5 5 9 5 7 5
     

    Sample Output

    230
     

    题意

    给出n个数,可以分成任意连续的段,每段的花费是这段内的数字和的平方,加m(定值),求最小花费。

    code

     1 #include<cstdio>
     2 #include<algorithm>
     3 
     4 using namespace std;
     5 
     6 const int N = 500100;
     7 const int INF = 1e9;
     8 typedef long long LL;
     9 LL s[N],f[N];
    10 int q[N];
    11 
    12 int Slope(int j,int k) {
    13     if (s[j]==s[k]) 
    14         if (f[j] > f[k]) return -INF;
    15         else return INF;
    16     return ((f[j]+s[j]*s[j])-(f[k]+s[k]*s[k]))/(2*s[j]-2*s[k]);
    17 }
    18 
    19 int main() {
    20     int n,m;
    21     while (~scanf("%d%d",&n,&m)) {
    22         for (int i=1; i<=n; ++i) {
    23             scanf("%lld",&s[i]);s[i] += s[i-1];
    24         }
    25         int L = 0,R = 0;
    26         for (int i=1; i<=n; ++i) {
    27             while (L<R && Slope(q[L+1],q[L])<s[i]) L++;
    28             int j = q[L];
    29             f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j])+m;
    30             while (L<R && Slope(q[R],q[R-1])>Slope(i,q[R])) R--;
    31             q[++R] = i;
    32         }
    33         printf("%lld
    ",f[n]);
    34     }
    35     return 0;
    36 }

    参考:

    斜率优化

    http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html

    http://www.cnblogs.com/xiaolongchase/archive/2012/02/10/2344769.html

  • 相关阅读:
    SVG 2D入门11
    SVG 2D入门13
    jetty
    jquery 跨域访问问题 转
    js 读取 地址栏参数 转
    油猴 greasemonkey 背景音乐 火狐 chrome 背景音乐
    火狐 about:config
    js javascript 模拟点击 超级链接点击 转
    PostgreSQL的时间/日期函数使用 转
    update 多表
  • 原文地址:https://www.cnblogs.com/mjtcn/p/8537341.html
Copyright © 2011-2022 走看看