zoukankan      html  css  js  c++  java
  • P4512 【模板】多项式除法

    P4512 【模板】多项式除法

    链接

    分析  

      多项式除法

    注意的地方:

    75,76行开始时是这样写的:

    memcpy(TA,a,sizeof(int)*(n+1));memset(TA+n+1,0,sizeof(TA));
    memcpy(TB,b,sizeof(int)*(m+1));memset(TB+m+1,0,sizeof(TB));

    然后开O2的情况不过。最后发现时后面的memset不能这样写。然后在本地开O2测试,可以过样例。。。 ~ 惊!~ 吓!

    代码

      1 #include<cstdio>
      2 #include<algorithm>
      3 #include<cstring>
      4 #include<cmath>
      5 #include<iostream>
      6 #include<cctype>
      7 
      8 #define P 998244353
      9 #define G 3
     10 #define Gi 332748118 
     11 #define N 270000
     12 
     13 using namespace std;
     14 
     15 int A[N],B[N],D[N],TA[N],TB[N],DR[N],Binv[N],R[N];
     16 
     17 inline int read() {
     18     int x = 0,f = 1;char ch=getchar();
     19     for (; !isdigit(ch); ch=getchar()) if(ch=='-')f=-1;
     20     for (; isdigit(ch); ch=getchar()) x=x*10+ch-'0';
     21     return x*f;
     22 }
     23 
     24 int ksm(int a,int b) {
     25     int ans = 1;
     26     while (b) {
     27         if (b & 1) ans = (1ll * ans * a) % P;
     28         a = (1ll * a * a) % P;
     29         b >>= 1;
     30     }
     31     return ans;
     32 }
     33 void NTT(int *a,int n,int ty) {
     34     for (int i=0,j=0; i<n; ++i) {
     35         if (i < j) swap(a[i],a[j]);
     36         for (int k=(n>>1); (j^=k)<k; k>>=1);
     37     }
     38     for (int w1,m=2; m<=n; m<<=1) {
     39         if (ty == 1) w1 = ksm(G,(P-1)/m);
     40         else w1 = ksm(Gi,(P-1)/m);
     41         for (int i=0; i<n; i+=m) {
     42             int w = 1;
     43             for (int k=0; k<(m>>1); ++k) {
     44                 int u = a[i+k],t = 1ll * w * a[i+k+(m>>1)] % P;
     45                 a[i+k] = (u + t) % P;
     46                 a[i+k+(m>>1)] = (u - t + P) % P;
     47                 w = 1ll * w * w1 % P;
     48             }
     49         }
     50     }
     51     if (ty==-1) {
     52         int inv = ksm(n,P-2);
     53         for (int i=0; i<n; ++i) a[i] = 1ll * a[i] * inv % P;
     54     }
     55     
     56 }
     57 void Inv(int *A,int *B,int n) { 
     58     int len = 1;
     59     while (len <= n) len <<= 1; 
     60     B[0] = ksm(A[0],P-2);
     61     for (int m=2; m<=len; m<<=1) {
     62         for (int i=0; i<m; ++i) TA[i] = A[i],TB[i] = B[i];
     63         NTT(TA,m<<1,1);
     64         NTT(TB,m<<1,1);
     65         for (int i=0; i<(m<<1); ++i) TA[i] = 1ll*TA[i]*TB[i]%P*TB[i]%P;
     66         NTT(TA,m<<1,-1);
     67         for (int i=0; i<m; ++i) B[i] = (1ll*2*B[i]%P-TA[i]+P)%P;
     68     }
     69     memset(TA,0,sizeof(TA));
     70     memset(TB,0,sizeof(TB));
     71 }
     72 void Mul(int *a,int *b,int *C,int n,int m) {
     73     int len = 1;
     74     while (len <= n+m) len <<= 1;
     75     for (int i=0; i<=n; ++i) TA[i] = a[i];
     76     for (int i=0; i<=m; ++i) TB[i] = b[i];
     77     NTT(TA,len,1);
     78     NTT(TB,len,1);
     79     for (int i=0; i<len; ++i) C[i] = (1ll * TA[i] * TB[i]) % P,TA[i] = TB[i] = 0;
     80     NTT(C,len,-1);
     81 }
     82 int main() {
     83     int n = read() ,m = read() ;
     84     for (int i=0; i<=n; ++i) A[i] = read();
     85     for (int i=0; i<=m; ++i) B[i] = read();
     86     
     87     reverse(A,A+n+1);reverse(B,B+m+1); 
     88     
     89     Inv(B,Binv,n-m); // 求B转换后的逆元 
     90     Mul(A,Binv,D,n-m,n-m); // 求转换后的D 
     91     reverse(D,D+n-m+1);  
     92     for (int i=0; i<=n-m; ++i) printf("%d ",D[i]);puts("");
     93     
     94     reverse(A,A+n+1);reverse(B,B+m+1);
     95     Mul(D,B,R,n-m,m); // 求D*B 
     96     for (int i=0; i<m; ++i) R[i] = (A[i] - R[i] + P) % P; // 求R 
     97     for (int i=0; i<m; ++i) printf("%d ",R[i]);
     98     
     99     return 0;
    100 }
  • 相关阅读:
    mysql总结
    JVM入门_笔记_狂神说
    spring-与事务管理相关的工具类
    spring-获取连接的工具类
    浏览器调试之 实时更新 browser-sync
    Git: 版本控件
    Visual Studio Code 自定义快捷键,自动生成.vue文件
    Markdown基本语法
    Node.js 平台-服务器 之 Express
    chrome插件之 vue devtools
  • 原文地址:https://www.cnblogs.com/mjtcn/p/9157378.html
Copyright © 2011-2022 走看看