zoukankan      html  css  js  c++  java
  • 【做题记录】CF1223D Sequence Sorting

    Problem

    CF1223D

    题目大意:

    给出一个长度为 (n) 的序列 (a),其中对于 (forall 1 le i le n,1 le a_i le n)
    每次操作可以把所有值为 (x) 的数放到序列的最前面或最后面,问使序列单调上升的最小操作次数是多少。

    Solution

    首先有两个很重要的性质。

    第一个性质,每一种数最多只会被移动一次。
    可以用反证法来证明。假设一个数 (x) 被移动到了头或尾,那么它再被移动就需要在之后有一个比x大的数移动到了头或一个比 (x) 小的数移动到了尾。
    那么此时我们可以通过先移动那个数再移动 (x) 的方式使它的移动次数又变会 (1) 次。

    第二个性质,不被移动的数一定是一段连续的数。这里的连续指的是在数值上相邻两种数的差值为 (1)
    如果不是一段连续的数,那么说明中间间隔的那些数是需要被移动的,但是移动之后,必然会导致不移动的数的位置错乱,所以是不可能的。

    当然,不移动的数也必须本身有序才行。那么接下来的目标就是找到这样满足要求的最长的长度。

    我们考虑当数没有重复,即原序列是一个排列时怎么做。
    可以使用递推,设 (f_i) 表示以数字 (i) 为结尾的最长的不移动的数字长度。
    很明显,若数字 (i-1) 出现在 (i) 之前,则 (f_i=f_{i-1}+1),也就是继承前面的答案。否则 (f_i=1),因为无法继承答案,所以只能是自己一个。
    最后对于所有的 (1 le i le n),取最大的 (f_i) 即可。时间复杂度为 (O(n))

    那么对于有重复的数,我们发现只要改动对于能否继承的判断即可。那么什么情况下能继承,什么情况下不能呢?我们把所有的情况都枚举一遍。当然枚举时也有技巧。我们可以把相同的数看做一段区间,最左边的数的位置即为左边界,最右边的数的位置即为右边:



    上面三张图中,红色的表示前一个数的区间,蓝色的表示当前数的区间。

    我们观察后发现:只有第一张图的情况可以继承答案,即上一个数整个区间都在当前数区间的左边,此时满足上一个区间的右边界比当前数的左边界小。
    第二和第三张图都不满足条件,即两个区间交叉或当前数整个区间在上一个数的区间的左边。此时满足上一个数的区间的右边界比当前数区间的左边界大。
    那么,我们只要预处理出每个区间的左右边界,就可以做到 (O(1)) 判断。预处理可以 (O(n)) 做。

    递推方式与排列时的方式相同。总时间复杂度为 (O(n))
    另外还有一点需要注意,因为有重复数字,所以必然有一些数字没有出现,若当前数是 (i),那么不能从 (i-1) 转移过来,应该从上一个出现的数转移过来。

    Code

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    inline int read()
    {
    	int x=0,f=1;char c=getchar();
    	while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}
    	while(c>='0'&&c<='9'){x=(x<<3)+(x<<1)+(c^48);c=getchar();}
    	return x*f;
    }
    int q,n,a[300005],l[300005],r[300005];
    int sum,ans,f[300005];
    int main()
    {
    	q=read();
    	while(q--)
    	{
    		ans=0;
    		n=read();
    		for(int i=1;i<=n;i++) l[i]=r[i]=f[i]=0;
    		for(int i=1;i<=n;i++)
    		{
    			a[i]=read();
    			if(l[a[i]]==0) l[a[i]]=i;
    			r[a[i]]=i;
    		}//读入并预处理。
    		sum=n;//sum表示值不同的数的个数。
    		int lst=0;//lst表示上一个出现的数。
    		for(int i=1;i<=n;i++)
    		{
    			if(l[i]==0){sum--;continue;}
    			if(l[i]<r[lst]) f[i]=1;//不能继承答案
    			else f[i]=f[lst]+1;//能继承答案
    			ans=max(ans,f[i]);
    			lst=i;
    		}
    		printf("%d
    ",sum-ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    java基础的第二轮快速学习!day08
    java基础的第二轮快速学习!day07
    java基础的第二轮快速学习!day06
    Jsp复习(详细的知识点)day01
    Struts2,大爷你好!第二天补一发笔记
    java基础的第二轮快速学习!day05
    Struts2,大爷你好!第二天
    java基础的第二轮快速学习!day04
    Struts2,大爷你好!第一天
    java基础的第二轮快速学习!day03
  • 原文地址:https://www.cnblogs.com/mk-oi/p/15109786.html
Copyright © 2011-2022 走看看