zoukankan      html  css  js  c++  java
  • apriori关联规则

    挖掘数据集:贩物篮数据
     频繁模式:频繁地出现在数据集中的模式,例如项集,子结构,子序列等
     挖掘目标:频繁模式,频繁项集,关联规则等
     关联规则:牛奶=>鸡蛋【支持度=2%,置信度=60%】
     支持度:分析中的全部事务的2%同时贩买了牛奶和鸡蛋
     置信度:贩买了牛奶的筒子有60%也贩买了鸡蛋
     最小支持度阈值和最小置信度阈值:由挖掘者戒领域专家设定

    项集:项(商品)的集合
     k-项集:k个项组成的项集
     频繁项集:满足最小支持度的项集,频繁k-项集一般记为L k
     强关联规则:满足最小支持度阈值和最小置信度阈值的规则

    apriori算法:

    两步过程:找出所有频繁项集;由频繁项集产生强关联规则

    具体挖掘步骤:

    1.依据支持度找出所有频繁项集(频度)

    2.依据置信度产生关联规则(强度)

    原理:如果一个项集是频繁项集,那么它的所有子集也是频繁项集;按照这个原理的逆否命题——如果一个集合有不是频繁项集的子集,那么该集合一定不是频繁项集

    算法工作流程(假设min_sup=2):

    候选k项集剪枝生成频繁k项集,频繁k项集自连接生成候选(k+1)项集,注意:频繁k项集自连接的前提是前(k-1)项相同,否则过滤掉该项集,不予连接,例如上图中L2*L2时,没有生成{I1,I3,I5}的原因就是{I1,I3,I5}的一个2项子集{I3,I5}没有出现在频繁2项集列表中,没有出现{I2,I3,I4}{I2,I3,I5}的原因也在这里,连接这步是算法优化的重点,另外一个技巧是增大min_sup,过滤掉相当一部分项集,否则自连接生成的项集会撑爆内存。具体步骤说明如下:

    步骤说明
     扫描D,对每个候选项计数,生成候选1-项集C1
     定义最小支持度阈值为2,从C1生成频繁1-项集L1
     通过L1xL1生成候选2-项集C2
     扫描D,对C2里每个项计数,生成频繁2-项集L2
     计算L3xL3,利用apriori性质:频繁项集的子集必然是频繁的,我们可以删去一部分项
    ,从而得到C3,由C3再经过支持度计数生成L3
     可见Apriori算法可以分成 连接,剪枝(1.扫描事务,去掉小于min_sup的项;2.去掉其子集不是频繁项集的项集) 两个步骤不断循环重复

    由频繁项集提取关联规则:

    例如:计算出的频繁项集{I1,I2,I5},提取规则步骤如下:

    Apriori算法的瓶颈:

    1.通过笛卡尔积自连接产生的组合项过多(只能人为提高min_sup减少频繁项集数目,这是以牺牲精度为代价的);

    2.每次剪枝都需要去扫描事务数据库,而事务数据库包含难以计数之多的购物篮信息

    总之:海量数据下,Apriori算法的时空复杂度都不容忽视。

    空间复杂度:如果clip_image010数量达到clip_image012的量级,那么clip_image014中的候选项将达到clip_image016的量级。

    时间复杂度:每计算一次clip_image018就需要扫描一遍数据库。

  • 相关阅读:
    hdu 2586 How far away ?(LCA模板题)
    Kattis
    SPOJ LEXSTR 并查集
    POJ 3159 Candies(spfa、差分约束)
    POJ 2240 Arbitrage (spfa判环)
    hdu 3974 Assign the task (线段树+树的遍历)
    POJ 2387 Til the Cows Come Home (dijkstra模板题)
    FZU 2150 Fire Game (高姿势bfs--两个起点)
    POJ 3414 Pots (dfs,这个代码好长啊QAQ)
    LightOJ 1422 Halloween Costumes
  • 原文地址:https://www.cnblogs.com/mlj5288/p/4448623.html
Copyright © 2011-2022 走看看