zoukankan      html  css  js  c++  java
  • codeforces891a

    A. Pride
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say xand y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

    What is the minimum number of operations you need to make all of the elements equal to 1?

    Input

    The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

    The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

    Output

    Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

    Examples
    input
    5
    2 2 3 4 6
    output
    5
    input
    4
    2 4 6 8
    output
    -1
    input
    3
    2 6 9
    output
    4
    Note

    In the first sample you can turn all numbers to 1 using the following 5 moves:

    • [2, 2, 3, 4, 6].
    • [2, 1, 3, 4, 6]
    • [2, 1, 3, 1, 6]
    • [2, 1, 1, 1, 6]
    • [1, 1, 1, 1, 6]
    • [1, 1, 1, 1, 1]

    We can prove that in this case it is not possible to make all numbers one using less than 5 moves.

    这个题很简单,就是找一下那个公约数为1

    看测试样例1:

    2 2 3 4 6

    先求他的第一层公约数就是2和2,2和3,3和4,4和6求公约数

    2 2 3 4 6

    2 1 1 2

    这时候发现有1的存在

    答案就是   当前的层数-1+n-1    (n就是几个数)   因为有一个1就能把所有的都变成1

    注意特判

    2

    1 1

    这种的

    丑陋的代码:

    #include <iostream>

    #include <cstdio>

    using namespace std;

    long long arr[2005][2005];

    long long gcd(long long a,long long b);

    int main()

    {

        long long n,i,j;

        int flag = 0;

        scanf("%lld",&n);

        for(i = 0; i < n; ++i) {

            scanf("%lld",arr[0]+i);

            if(arr[0][i] == 1)

                flag ++;

        }

        if(flag) {

            printf("%lld ",n-flag);

            return 0;

        }

        for(i = 1; i <= n-1; ++i)

        {

            for(j = 0; j < n - i; ++j)

            {

                arr[i][j] = gcd(arr[i-1][j], arr[i-1][j+1]);

                if(arr[i][j] == 1) {

                    printf("%lld ",i+n-1);

                    return 0;

                }

            }

        }

        printf("-1 ");

    }

    long long gcd(long long a,long long b)

    {

        return b == 0?a:gcd(b,a%b);

    }

  • 相关阅读:
    数组的空位
    数组方法之pop
    数组方法之push
    深拷贝
    浅拷贝
    手动编写用于react项目开发的的webpack配置文件
    ES6:export default 和 export 区别
    JS基础算法题(二)
    Linux系统下用户如何膝盖FTP用户密码
    Sublime Text 3 安装插件与快捷键总结
  • 原文地址:https://www.cnblogs.com/mltang/p/7859851.html
Copyright © 2011-2022 走看看