zoukankan      html  css  js  c++  java
  • 【转】OpenCV中使用神经网络 CvANN_MLP

    原文见:http://blog.csdn.net/xiaowei_cqu/article/details/9027617

    OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks, ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型。由于ml模型实现的算法都继承自统一的CvStatModel基类,其训练和预测的接口都是train(),predict(),非常简单。

    下面来看神经网络 CvANN_MLP 的使用~

    定义神经网络及参数:

    //Setup the BPNetwork
    	CvANN_MLP bp; 
    	// Set up BPNetwork's parameters
    	CvANN_MLP_TrainParams params;
    	params.train_method=CvANN_MLP_TrainParams::BACKPROP;
    	params.bp_dw_scale=0.1;
    	params.bp_moment_scale=0.1;
    	//params.train_method=CvANN_MLP_TrainParams::RPROP;
    	//params.rp_dw0 = 0.1; 
    	//params.rp_dw_plus = 1.2; 
    	//params.rp_dw_minus = 0.5;
    	//params.rp_dw_min = FLT_EPSILON; 
    	//params.rp_dw_max = 50.; 

    可以直接定义CvANN_MLP神经网络,并设置其参数。 BACKPROP表示使用back-propagation的训练方法,RPROP即最简单的propagation训练方法。

    使用BACKPROP有两个相关参数:bp_dw_scale即bp_moment_scale:

    使用PRPOP有四个相关参数:rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max:

    上述代码中为其默认值。

    设置网络层数,训练数据:

    // Set up training data
    	float labels[3][5] = {{0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}};
    	Mat labelsMat(3, 5, CV_32FC1, labels);
    
    	float trainingData[3][5] = { {1,2,3,4,5},{111,112,113,114,115}, {21,22,23,24,25} };
    	Mat trainingDataMat(3, 5, CV_32FC1, trainingData);
    	Mat layerSizes=(Mat_<int>(1,5) << 5,2,2,2,5);
    	bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);//CvANN_MLP::SIGMOID_SYM
    	                                           //CvANN_MLP::GAUSSIAN
    	                                           //CvANN_MLP::IDENTITY
    	bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);
    

      


    layerSizes设置了有三个隐含层的网络结构:输入层,三个隐含层,输出层。输入层和输出层节点数均为5,中间隐含层每层有两个节点。

    create第二个参数可以设置每个神经节点的激活函数,默认为CvANN_MLP::SIGMOID_SYM,即Sigmoid函数,同时提供的其他激活函数有Gauss和阶跃函数。

    使用训练好的网络结构分类新的数据:

    然后直接使用predict函数,就可以预测新的节点:

    Mat sampleMat = (Mat_<float>(1,5) << i,j,0,0,0);
    			Mat responseMat;
    			bp.predict(sampleMat,responseMat);
    

      

     

    完整程序代码:

    //The example of using BPNetwork in OpenCV
    //Coded by L. Wei
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/ml/ml.hpp>
    #include <iostream>
    #include <string>
    
    using namespace std;
    using namespace cv;
    
    int main()
    {
    	//Setup the BPNetwork
    	CvANN_MLP bp; 
    	// Set up BPNetwork's parameters
    	CvANN_MLP_TrainParams params;
    	params.train_method=CvANN_MLP_TrainParams::BACKPROP;
    	params.bp_dw_scale=0.1;
    	params.bp_moment_scale=0.1;
    	//params.train_method=CvANN_MLP_TrainParams::RPROP;
    	//params.rp_dw0 = 0.1; 
    	//params.rp_dw_plus = 1.2; 
    	//params.rp_dw_minus = 0.5;
    	//params.rp_dw_min = FLT_EPSILON; 
    	//params.rp_dw_max = 50.;
    
    	// Set up training data
    	float labels[3][5] = {{0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}};
    	Mat labelsMat(3, 5, CV_32FC1, labels);
    
    	float trainingData[3][5] = { {1,2,3,4,5},{111,112,113,114,115}, {21,22,23,24,25} };
    	Mat trainingDataMat(3, 5, CV_32FC1, trainingData);
    	Mat layerSizes=(Mat_<int>(1,5) << 5,2,2,2,5);
    	bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);//CvANN_MLP::SIGMOID_SYM
    	                                           //CvANN_MLP::GAUSSIAN
    	                                           //CvANN_MLP::IDENTITY
    	bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);
    
    
    	// Data for visual representation
    	int width = 512, height = 512;
    	Mat image = Mat::zeros(height, width, CV_8UC3);
    	Vec3b green(0,255,0), blue (255,0,0);
    	// Show the decision regions given by the SVM
    	for (int i = 0; i < image.rows; ++i)
    		for (int j = 0; j < image.cols; ++j)
    		{
    			Mat sampleMat = (Mat_<float>(1,5) << i,j,0,0,0);
    			Mat responseMat;
    			bp.predict(sampleMat,responseMat);
    			float* p=responseMat.ptr<float>(0);
    			int response=0;
    			for(int i=0;i<5;i++){
    			//	cout<<p[i]<<" ";
    				response+=p[i];
    			}
    			if (response >2)
    				image.at<Vec3b>(j, i)  = green;
    			else  
    				image.at<Vec3b>(j, i)  = blue;
    		}
    
    		// Show the training data
    		int thickness = -1;
    		int lineType = 8;
    		circle(	image, Point(501,  10), 5, Scalar(  0,   0,   0), thickness, lineType);
    		circle(	image, Point(255,  10), 5, Scalar(255, 255, 255), thickness, lineType);
    		circle(	image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
    		circle(	image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
    
    		imwrite("result.png", image);        // save the image 
    
    		imshow("BP Simple Example", image); // show it to the user
    		waitKey(0);
    
    }
    

      

  • 相关阅读:
    伪元素:placeholder-shown&&:focus-within
    伪元素:target
    伪元素:focus-within
    MpVue解析
    ESLint在vue中的使用
    vue动态 设置类名
    Java 文件流操作.
    SpringMVC 与 REST.
    基于Nginx和Zookeeper实现Dubbo的分布式服务
    基于Spring的RPC通讯模型.
  • 原文地址:https://www.cnblogs.com/mlv5/p/3241166.html
Copyright © 2011-2022 走看看