Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
解法一:递归超时
代码如下:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int countNodes(TreeNode root) { if(root==null)return 0; int num1=0,num2=0; num1=count(root.left); num2=count(root.right); return 1+num1+num2; } int count(TreeNode root){ if(root==null) return 0; int num1=0,num2=0; if(root.left==null && root.right==null) return 1; if(root.left!=null) num1=count(root.left); if(root.right!=null) num2=count(root.right); return 1+num1+num2; } }
运行结果:
解法二:层次遍历,队列,超时
代码如下:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int countNodes(TreeNode root) { if(root==null)return 0; Queue<TreeNode> q=new LinkedList<>(); q.offer(root); int num=1; TreeNode tmp=null; while(!q.isEmpty()){ tmp=q.poll(); if(tmp.left!=null){ q.offer(tmp.left); num++; } if(tmp.right!=null){ q.offer(tmp.right); num++; } } return num; } }
解法三:如果从某节点一直向左的高度 = 一直向右的高度, 那么以该节点为root的子树一定是complete binary tree. 而 complete binary tree的节点数,可以用公式算出 2^h - 1. 如果高度不相等, 则递归调用 return countNode(left) + countNode(right) + 1. 复杂度为O(h^2)
代码如下:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int countNodes(TreeNode root) { if(root==null) return 0; int l = getLeft(root) + 1; int r = getRight(root) + 1; if(l==r) { return (2<<(l-1)) - 1; } else { return countNodes(root.left) + countNodes(root.right) + 1; } } private int getLeft(TreeNode root) { int count = 0; while(root.left!=null) { root = root.left; ++count; } return count; } private int getRight(TreeNode root) { int count = 0; while(root.right!=null) { root = root.right; ++count; } return count; } }
运行结果: