今天在网上看到一篇2017年的论文,是关于图像配准的,偏医学图像,主要是讲针对于3D耳蜗医学图像的自动配准的问题,因为现存的技术都是医生使用手动成像进行图像配准和分割,非常耗时,而且耳蜗的体积非常小,结构复杂,这对于多模态耳蜗图像的自动配准来说是一个巨大的挑战。这篇论文提出了一种多模态人耳蜗图像的自动耳蜗配准(ACIR)方法。这种方法使用自适应随机梯度下降(ASGD)优化器和Mattes的互信息(MMI)度量。ACIR方法相对于过去两年已发表的最先进的医学图像注册优化器在时间上优化好多,节约了很多时间成本,ACIR只需要几秒钟就可以自动对准耳蜗图像。这篇论文的代码页费提供出来了,而且还有免费的标准数据集HCD,ACIR和HCD都了可以在网上免费下载。下图是它的一个实验结果:
(a) Chart
(b) Image
Fig Sample results. The CBCT image is registered to the MR image
另外,源代码的工具是基于elastix的,下面就是关于elastic的:
https://academic.oup.com/jamia 这是官网。
论文题目:Automatic Image Registration for 3D Cochlea Medical Images.
论文来源:Springer-Verlag GmbH Deutschland 2017。