zoukankan      html  css  js  c++  java
  • BZOJ 2226 LCMSum

    Description

    Given (n), calculate the sum (LCM(1,n) + LCM(2,n) + cdots + LCM(n,n)), where (LCM(i,n)) denotes the Least Common Multiple of the integers (i) and (n).

    Input

    The first line contains (T) the number of test cases. Each of the next (T) lines contain an integer (n).

    Output

    Output (T) lines, one for each test case, containing the required sum.

    Sample Input

    3
    1
    2
    5

    Sample Output

    1
    4
    55

    HINT

    (1 le T le 300000)
    (1 le n le 1000000)

    题目求$$sum_{i=1}^{n}LCM(i,n)$$
    根据(LCM)的公式,即$$sum_{i=1}^{n}frac{i imes n}{GCD(i,n)}$$
    我们枚举(GCD)——(g),即$$sum_{g=1}^{n}[g mid n]n sum_{i=1}^{n}i[GCD(i,n)=g]$$
    化简一下,转而求$$sum_{g=1}^{n}[g mid n]n sum_{i=1}^{n}i[GCD(frac{i}{g},frac{n}{g})=1]$$
    变化一下(i)的范围:$$sum_{g=1}^{n}[g mid n]n sum_{i=1}^{frac{n}{g}}i[GCD(i,frac{n}{g})=1]$$
    (sum_{i=1}^{frac{n}{g}}i[GCD(i,frac{n}{g})=1])(frac{n}{g})内与之互质的数的和,这个有个公式:$$sum_{i=1}^{n}i[GCD(n,i)=1]= frac{phi(n) imes n}{2}$$
    如何证明,假设某个数(a)(n)互质,那么(n-a)一定也与(n)互质,这样的数一共有(phi(n))个,于是得证,但在(n=1)是要特判,于是这个式子就出来了。$$sum_{i=1}{n}LCM(i,n)=sum_{g=1}{n}[g mid n]n frac{phi(frac{n}{g}) imes frac{n}{g} }{2}$$

    #include<cstdio>
    #include<cstdlib>
    using namespace std;
    
    typedef long long ll;
    #define maxn (1000010)
    bool exist[maxn]; int n,phi[maxn],prime[maxn],tot;
    
    inline void ready()
    {
    	phi[1] = 1;
    	for (int i = 2;i < maxn;++i)
    	{
    		if (!exist[i]) phi[i] = i-1,prime[++tot] = i;
    		for (int j = 1;j <= tot;++j)
    		{
    			if (i*prime[j] >= maxn) break;
    			exist[i*prime[j]] = true;
    			if (i % prime[j] == 0) { phi[i*prime[j]] = phi[i]*prime[j]; break; }
    			else phi[i*prime[j]] = phi[i]*phi[prime[j]];
    		}
    	}
    }
    inline ll calc(int g)
    {
    	if (g == 1) return 1;
    	return ((ll)phi[g]*(ll)g>>1);
    }
    
    int main()
    {
    	freopen("2226.in","r",stdin);
    	freopen("2226.out","w",stdout);
    	ready();
    	int T; scanf("%d",&T);
    	while (T--)
    	{
    		scanf("%d",&n);
    		ll ans = 0;
    		for (int g = 1;g * g <= n;++g)
    			if (n % g == 0)
    			{
    				ans += (ll)n*calc(n / g);
    				if (g * g != n) ans += (ll)n*calc(g);
    			}
    		printf("%lld
    ",ans);
    	}
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    redis单点登录,session,cookie
    maven中pom依赖下载不下来解决方案
    nexus 3.x私服配置 windows/linux 版本
    TypeScript中元组的使用和类型约束
    TypeScript 数组类型的定义
    TypeScript函数参数和返回类型定义
    TypeScript类型注释和类型推断
    TypeScript静态类型
    TypeScript环境安装
    TypeScript学习目录
  • 原文地址:https://www.cnblogs.com/mmlz/p/4394723.html
Copyright © 2011-2022 走看看