zoukankan      html  css  js  c++  java
  • Codeforces 713 C Sonya and Problem Wihtout a Legend

    Description

    Sonya was unable to think of a story for this problem, so here comes the formal description.
    You are given the array containing (n) positive integers. At one turn you can pick any element and increase or decrease it by (1). The goal is the make the array strictly increasing by making the minimum possible number of operations. You are allowed to change elements in any way, they can become negative or equal to (0).

    Input

    The first line of the input contains a single integer (n (1  le  n le 3000)) — the length of the array.
    Next line contains (n) integer (a_{i}(1 le a_{i} le  10^{9})).

    Output

    Print the minimum number of operation required to make the array strictly increasing.

    Sample Input

    7
    2 1 5 11 5 9 11

    Sample Output

    9

    BZOJ1049 数字序列类似,所有我想到了(O(N^{3}))做法,果断TLE。标解懂了些,做法太神了,什么维护中位数,但就是不知道转移怎么会没有后效性。
    此处介绍另一种做法。首先也是将单调上升变为单调不降(见BZOJ1049 数字序列)。(f_{i,j})表示前(i)个数,最大为(j)的合法序列最小代价。转移方程

    [f_{i,j} = min{f_{i-1,k} }+mid A_{i}-j mid(k le j) ]

    当然(A)值域太大,我们可以离散化。代码如下:

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    using namespace std;
    
    typedef long long ll;
    #define inf (1LL<<50)
    #define maxn (3010)
    int N,cnt; ll f[maxn][maxn],ans = inf,A[maxn],B[maxn];
    
    int main()
    {
    	freopen("E.in","r",stdin);
    	freopen("E.out","w",stdout);
    	scanf("%d",&N);
    	for (int i = 1;i <= N;++i) scanf("%I64d",A+i),A[i] -= i;
    	memcpy(B,A,sizeof(B)); B[N+1] = -inf,B[N+2] = inf;
    	sort(B+1,B+N+3); cnt = unique(B+1,B+N+3)-B-1;
    	A[0] = -inf; A[N+1] = inf;
    	memset(f,0x7,sizeof(f)); f[0][1] = 0;
    	for (int i = 1;i <= N+1;++i)
    	{
    		ll tmp = inf;
    		for (int j = 1;j <= cnt;++j)
    			tmp = min(tmp,f[i-1][j]),f[i][j] = tmp+abs(A[i]-B[j]);
    	}
    	for (int i = 1;i <= cnt;++i) ans = min(ans,f[N+1][i]);
    	printf("%I64d",ans);
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    Eclipse使用jre的原理与配置
    [笔记]Android开发环境配置及HelloWorld程序
    【足迹C++primer】38、关联容器操作(2)
    Linux ls 命令实现(简化版)
    POJ1149_PIGS(网络流/EK)
    调用存储过程取到数据通过NPOI存到Excel中
    python get post模拟请求
    常见软件应用
    Docker 镜像的导入和导出
    Linux 编译安装R语言
  • 原文地址:https://www.cnblogs.com/mmlz/p/5879421.html
Copyright © 2011-2022 走看看