zoukankan      html  css  js  c++  java
  • Uva 10288 Coupons

    Description

    Coupons in cereal boxes are numbered (1) to (n), and a set of one of each is required for a prize (a cereal box, of course). With one coupon per box, how many boxes on average are required to make a complete set of (n) coupons?

    Input

    Input consists of a sequence of lines each containing a single positive integer (n),(1 le n le 33), giving the size of the set of coupons. Input is terminated by end of file.

    Output

    For each input line, output the average number of boxes required to collect the complete set of (n) coupons. If the answer is an integer number, output the number. If the answer is not integer, then output the integer part of the answer followed by a space and then by the proper fraction in the format shown below. The fractional part should be irreducible. There should be no trailing spaces in any line of output.

    Sample Input

    2
    5
    17

    Sample Output

    3
    5
    11 --
    12
    340463
    58 ------
    720720

    若当前已有(k)种Coupons,那么获得新的Coupons的概率为(p = frac{n-k}{n}),所以获得一种新Coupons的期望步数为$$p+2p(1-p)+3p(1-p)^2+cdots$$
    用错位相消+无穷等比数列求和数列公式,化简得(frac{n}{n-k}),所以$$ans = nsum_{i = 1}^{n}frac{1}{i}$$

    #include<cstdio>
    #include<cstdlib>
    using namespace std;
    
    typedef long long ll;
    int N;
    
    inline ll gcd(ll a,ll b) { if (!b) return a; return gcd(b,a%b); }
    inline int ws(ll a) { int ret = 0; while (a) a /= 10,++ret; return ret; }
    
    struct node
    {
    	ll a,b,c;
    	inline node() { c = 1; }
    
    	inline void update()
    	{
    		ll g = gcd(b,c); b /= g,c /= g;
    		a += b/c; b %= c;
    	}
    	
    	friend inline node operator + (const node &x,node &y)
    	{
    		node ret; y.update();
    		ret.a = x.a+y.a; ret.c = x.c*y.c/gcd(x.c,y.c);
    		ret.b = x.b*(ret.c/x.c)+y.b*(ret.c/y.c);
    		ret.update(); return ret;
    	}
    
    	friend inline node operator *(const node &x,const int &y)
    	{
    		node ret; ret.a = x.a*y;
    		ll g = gcd(x.c,y); ret.b = (y/g)*x.b; ret.c = x.c/g;
    		ret.update(); return ret;
    	}
    
    	inline void print()
    	{
    		if (!b) printf("%lld
    ",a);
    		else
    		{
    			int t = ws(a);
    			for (int i = t+1;i--;) putchar(' ');
    			printf("%lld
    ",b);
    			printf("%lld ",a);
    			for (int i = ws(c);i--;) putchar('-');
    			puts("");
    			for (int i = t+1;i--;) putchar(' ');
    			printf("%lld
    ",c);
    		}
    	}
    }ans;
    
    int main()
    {
    	freopen("10288.in","r",stdin);
    	freopen("10288.out","w",stdout);
    	while (scanf("%d
    ",&N) != EOF)
    	{
    		ans.a = ans.b = 0; ans.c = 1;
    		for (int i = 1;i <= N;++i)
    		{
    			node tmp; tmp.a = 0,tmp.b = 1,tmp.c = i;
    			ans = ans + tmp;
    		}
    		ans = ans * N; ans.print();
    	}
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    Vue 事件修饰符 阻止默认事件
    vue created 生命周期
    续集---网络管理常用命令
    网络管理常用命令(6/14) -netstat命令详解
    系统OOM复位定位
    nohup- Shell后台运行
    一个linux命令(6/13):traceroute命令
    一个linux命令(6/12):cat 命令
    linux命令(6/11)--修改文件的用户组chgrp和文件所有者chown
    Linux终端快捷键
  • 原文地址:https://www.cnblogs.com/mmlz/p/6054844.html
Copyright © 2011-2022 走看看