zoukankan      html  css  js  c++  java
  • Uva 10288 Coupons

    Description

    Coupons in cereal boxes are numbered (1) to (n), and a set of one of each is required for a prize (a cereal box, of course). With one coupon per box, how many boxes on average are required to make a complete set of (n) coupons?

    Input

    Input consists of a sequence of lines each containing a single positive integer (n),(1 le n le 33), giving the size of the set of coupons. Input is terminated by end of file.

    Output

    For each input line, output the average number of boxes required to collect the complete set of (n) coupons. If the answer is an integer number, output the number. If the answer is not integer, then output the integer part of the answer followed by a space and then by the proper fraction in the format shown below. The fractional part should be irreducible. There should be no trailing spaces in any line of output.

    Sample Input

    2
    5
    17

    Sample Output

    3
    5
    11 --
    12
    340463
    58 ------
    720720

    若当前已有(k)种Coupons,那么获得新的Coupons的概率为(p = frac{n-k}{n}),所以获得一种新Coupons的期望步数为$$p+2p(1-p)+3p(1-p)^2+cdots$$
    用错位相消+无穷等比数列求和数列公式,化简得(frac{n}{n-k}),所以$$ans = nsum_{i = 1}^{n}frac{1}{i}$$

    #include<cstdio>
    #include<cstdlib>
    using namespace std;
    
    typedef long long ll;
    int N;
    
    inline ll gcd(ll a,ll b) { if (!b) return a; return gcd(b,a%b); }
    inline int ws(ll a) { int ret = 0; while (a) a /= 10,++ret; return ret; }
    
    struct node
    {
    	ll a,b,c;
    	inline node() { c = 1; }
    
    	inline void update()
    	{
    		ll g = gcd(b,c); b /= g,c /= g;
    		a += b/c; b %= c;
    	}
    	
    	friend inline node operator + (const node &x,node &y)
    	{
    		node ret; y.update();
    		ret.a = x.a+y.a; ret.c = x.c*y.c/gcd(x.c,y.c);
    		ret.b = x.b*(ret.c/x.c)+y.b*(ret.c/y.c);
    		ret.update(); return ret;
    	}
    
    	friend inline node operator *(const node &x,const int &y)
    	{
    		node ret; ret.a = x.a*y;
    		ll g = gcd(x.c,y); ret.b = (y/g)*x.b; ret.c = x.c/g;
    		ret.update(); return ret;
    	}
    
    	inline void print()
    	{
    		if (!b) printf("%lld
    ",a);
    		else
    		{
    			int t = ws(a);
    			for (int i = t+1;i--;) putchar(' ');
    			printf("%lld
    ",b);
    			printf("%lld ",a);
    			for (int i = ws(c);i--;) putchar('-');
    			puts("");
    			for (int i = t+1;i--;) putchar(' ');
    			printf("%lld
    ",c);
    		}
    	}
    }ans;
    
    int main()
    {
    	freopen("10288.in","r",stdin);
    	freopen("10288.out","w",stdout);
    	while (scanf("%d
    ",&N) != EOF)
    	{
    		ans.a = ans.b = 0; ans.c = 1;
    		for (int i = 1;i <= N;++i)
    		{
    			node tmp; tmp.a = 0,tmp.b = 1,tmp.c = i;
    			ans = ans + tmp;
    		}
    		ans = ans * N; ans.print();
    	}
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    使用Optioanl优雅的处理空值
    综合对比 Kafka、RabbitMQ、RocketMQ、ActiveMQ 四个分布式消息队列
    Nginx 相关介绍
    在Intellij IDEA中使用Debug
    关于Spring的BeanUtils
    MySQL 索引总结
    java中值传递和引用传递
    SQL易错锦集
    Java和SQL取两个字符间的值
    好文章收藏--五分钟理解一致性哈希算法(consistent hashing)
  • 原文地址:https://www.cnblogs.com/mmlz/p/6054844.html
Copyright © 2011-2022 走看看