zoukankan      html  css  js  c++  java
  • Hdu 2971 Tower

    Description

    Alan loves to construct the towers of building bricks. His towers consist of many cuboids with square base. All cuboids have the same height (h = 1). Alan puts the consecutive cuboids one over another:
    Recently in math class, the concept of volume was introduced to Alan. Consequently, he wants to compute the volume of his tower now. The lengths of cuboids bases (from top to bottom) are constructed by Alan in the following way:

    1. Length (a_{1}) of the first square is one.
    2. Next, Alan fixes the length (a_{2}) of the second square.
    3. Next, Alan calculates the length (a_{n} (n > 2)) by (2 imes a2 imes (a_{n-1})-(a_{n-2})). Do not ask why he chose such a formula; let us just say that he is a really peculiar young fellow. For example, if Alan fixes (a_{2} = 2), then (a_3 = 8 -a_1 = 7); see Figure 1. If Alan fixes (a_2 = 1), then (a_n = 1) holds for all n belong to N; see Figure 2.
      Now Alan wonders if he can calculate the volume of tower of (N) consecutive building bricks. Help Alan and write the program that computes this volume. Since it can be quite large, it is enough to compute the answer modulo given natural number (m).

    Input

    The input contains several test cases. The first line contains the number t (t <= 10^5) denoting the number of test cases. Then t test cases follow. Each of them is given in a separate line containing three integers (a2,N,m) ((1 le a_2,m le 10^9, 2 le N le 10^9)) separated by a single space, where (a_2) denotes the fixed length of second square in step (2), while (N) denotes the number of bricks constructed by Alan.

    Output

    For each test case ((a_2,N,m)) compute the volume of tower of (N) consecutive bricks constructed by Alan according to steps ((1-3)) and output its remainder modulo (m).

    Sample Input

    3
    2 3 100
    1 4 1000
    3 3 1000000000

    Sample Output

    54
    4
    299

    SB矩阵乘法。另(p = 2a_2)把公式写写$$a_n^2 = p2a_{n-1}2-2pa_{n-1}a_{n-2}$$

    [S_n = S_{n-1}+a_n^2 ]

    [2pa_na_{n-1} = 2p^2a_{n-1}^2-2pa_{n-1}a_{n-2} ]

    然后我们的初始矩阵$$A = (a_n^2 quad a_{n-1}^2 quad a_{n-1}a_{n-2} quad S_{n-1})$$,然后就可以线性递推了。

    #include<cstring>
    #include<cstdio>
    #include<cstdlib>
    using namespace std;
    
    typedef long long ll;
    int d,N,rhl,T;
    
    struct Matrix
    {
    	int a[4][4],n,m;
    	inline Matrix() { memset(a,0,sizeof(a)); }
    	friend inline Matrix operator *(const Matrix &x,const Matrix &y)
    	{
    		Matrix ret; ret.n = x.n; ret.m = y.m;
    		for (int i = 0;i < ret.n;++i)
    			for (int j = 0;j < ret.m;++j)
    				for (int k = 0;k < x.m;++k)
    				{
    					ret.a[i][j] += (ll)x.a[i][k]*(ll)y.a[k][j]%rhl;
    					if (ret.a[i][j] >= rhl) ret.a[i][j] -= rhl;
    				}
    		return ret;
    	}
    }st,mul,ans;
    
    inline Matrix qsm(Matrix a,int b)
    {
    	Matrix ret; ret.n = ret.m = a.n;
    	for (int i = 0;i < ret.n;++i) ret.a[i][i] = 1;
    	for (;b;b >>= 1,a = a*a) if (b & 1) ret = ret*a;
    	return ret;
    }
    
    inline void work()
    {
    	st.n = 1; st.m = 4;
    	st.a[0][0] = (ll)d*(ll)d%rhl; st.a[0][1] = 1;
    	st.a[0][2] = d; st.a[0][3] = 1;
    
    	mul.n = mul.m = 4;
    	mul.a[0][0] = (ll)(2*d)*(ll)(2*d)%rhl; mul.a[0][1] = 1; mul.a[0][2] = (2*d)%rhl; mul.a[0][3] = 1;
    	mul.a[1][0] = 1;
    	mul.a[2][0] = ((ll)(-4)*(ll)d%rhl)+rhl; mul.a[2][2] = rhl-1;
    	mul.a[3][3] = 1;
    
    	ans = st*qsm(mul,N-1);
    	printf("%d
    ",ans.a[0][3]);
    }
    
    int main()
    {
    	freopen("2971.in","r",stdin);
    	freopen("2971.out","w",stdout);
    	scanf("%d",&T);
    	while (T--)
    	{
    		scanf("%d %d %d",&d,&N,&rhl);
    		if (N == 1) puts("1");
    		else if (N == 2) printf("%d
    ",((ll)d*(ll)d+1LL)%rhl);
    		else work();
    	}
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    常用图书下载
    模式另类说明
    windows进程中的内存结构
    Windows API学习手记
    20060318工作记录
    X3全局变量及公共函数所在的命名空间说明
    PHP 后台定时循环刷新某个页面 屏蔽apache意外停止
    php随机生成指定长度的字符串 可以固定数字 字母 混合
    以div代替frameset,用css实现仿框架布局
    核中汇编写的字符串函数代码分析
  • 原文地址:https://www.cnblogs.com/mmlz/p/6059671.html
Copyright © 2011-2022 走看看