zoukankan      html  css  js  c++  java
  • poj3375 Network Connection

    Description

    There are (M) network interfaces in the wall of aisle of library. And (N) computers next to the wall need to be connected to the network. A network interface can only connect with one computer at most. To connect an interface with coordinate (x) with a computer with coordinate (y) needs (|x - y|) unit of length of network cable. Your task is to minimize the total length of network cables to be used.

    Input

    The first line contains two integers (M (1 ≤ M ≤ 100000), N (1 ≤ N ≤ 2000, N ≤ M)). The following (M + N) lines each contains a integer coordinate. The first (M) coordinates are corresponding to the network interfaces, and the next (N) ones corresponding to the computers. All coordinates are arranged in ([0, 1000000]). Distinct interfaces may have the same coordinate, so do the computers.

    Output

    Print an integer, representing minimum length of network cables to be used.

    Sample Input

    4 2
    1
    10
    12
    20
    11
    15

    Sample Output

    4

    排序+离散化。
    状态(f[i][j])表示考虑前(i)台电脑,最后一台插在第(j)个接口上的最小代价。转移$$f[i][j] = min_{i-1 le k < j} { f[i-1][k]+mid A_i-B_j mid }$$可用前缀和优化,复杂度(O(NM))
    减少无用状态:每台电脑的接口一定不会离他很远。假设离(i)最近的接口为(j),只需要枚举(j-N sim j+N)这些接口即可,这里面一定有些是空的。

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstdlib>
    using namespace std;
    
    typedef long long ll;
    const int maxn = 2010,maxm = 100010;
    const ll inf = 1LL<<60;
    ll f[2][maxm],ans = inf; int N,M,A[maxm],B[maxn];
    
    inline int gi()
    {
    	char ch; int ret = 0,f = 1;
    	do ch = getchar(); while (!(ch >= '0'&&ch <= '9')&&ch != '-');
    	if (ch == '-') f = -1,ch = getchar();
    	do ret = ret*10+ch-'0',ch = getchar(); while (ch >= '0'&&ch <= '9');
    	return ret*f;
    }
    
    int main()
    {
    	freopen("3375.in","r",stdin);
    	freopen("3375.out","w",stdout);
    	M = gi(); N = gi();
    	for (int i = 1;i <= M;++i) A[i] = gi();
    	for (int i = 1;i <= N;++i) B[i] = gi();
    	sort(A+1,A+M+1); sort(B+1,B+N+1);
    	for (int i = 0;i <= M;++i) f[1][i] = inf;
    	for (int i = 1,now = 1,last = 0,Lastl = 0,Lastr = M;i <= N;++i,swap(now,last))
    	{
    		int pos = lower_bound(A+1,A+M+1,B[i])-A,l = max(1,pos-N-1),r = min(M,pos+N+1);
    		for (int j = l;j <= r;++j) f[now][j] = min(f[now][j-1],f[last][min(j-1,Lastr)]+(ll)abs(A[j]-B[i]));
    		for (int j = Lastl;j <= Lastr;++j) f[last][j] = inf;
    		Lastl = l; Lastr = r;
    	}
    	for (int i = 1,now = N&1;i <= M;++i) ans = min(ans,f[now][i]);
    	cout << ans << endl;
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    C++ 虚函数表解析
    Zend Studio使用
    Java的位运算符具体解释实例——与(&amp;)、非(~)、或(|)、异或(^)
    史上最简单的Hibernate入门简单介绍
    Ubuntu下很给力的下载工具
    hdu1698 Just a Hook 线段树:成段替换,总区间求和
    STL vector使用方法介绍
    Linux守护进程的编程实现
    PDO--PHP Data Objects
    经常使用的android弹出对话框
  • 原文地址:https://www.cnblogs.com/mmlz/p/6403836.html
Copyright © 2011-2022 走看看