zoukankan      html  css  js  c++  java
  • Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge

    题目连接:

    http://www.codeforces.com/contest/609/problem/E

    Description

    Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.

    For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).

    The weight of the spanning tree is the sum of weights of all edges included in spanning tree.

    Input

    First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.

    Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.

    Output

    Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.

    The edges are numbered from 1 to m in order of their appearing in input.

    Sample Input

    5 7

    1 2 3

    1 3 1

    1 4 5

    2 3 2

    2 5 3

    3 4 2

    4 5 4

    Sample Output

    9

    8

    11

    8

    8

    8

    9

    Hint

    题意

    给你一个图,n点m边。对于每个边,问你包含这条边的最小生成树是多少。

    题解:

    先生成一个最小生成树,加入一条边,可能会产生一个环,那么求这个环的最小值即可,

    这个用倍增就行,就和求次小生成树一模一样。

    今天typora终于可以用搜狗输入法了,我发现终端打开都用不了搜狗输入法,真奇怪呀。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define N 400050
    ll n,m;
    ll dp[N],mm[N],fu[N][21],mx[N][21];
    ll tot,last[N];
    struct Edge
    {
        ll from,to,val,s;
        bool operator < (const Edge&b)
            {return val<b.val;}
    }a[N],edges[N];
    template<typename T>void read(T&x)
    {
        ll k=0; char c=getchar();
        x=0;
        while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
        if (c==EOF)exit(0);
        while(isdigit(c))x=x*10+c-'0',c=getchar();
        x=k?-x:x;
    }
    void read_char(char &c)
    {while(!isalpha(c=getchar())&&c!=EOF);}
    void AddEdge(ll x,ll y,ll z)
    {
        edges[++tot]=Edge{x,y,z,last[x]};
        last[x]=tot;
    }
    ll gf(ll x,ll *f)
    {
        if (x==f[x])return x;
        return f[x]=gf(f[x],f);
    }
    ll MST(Edge *edges)
    {
        static ll f[N]; static Edge a[N];
        for(ll i=1;i<=m;i++)a[i]=edges[i];
        ll num=0,sum=0;
        sort(a+1,a+m+1);
        for(ll i=1;i<=n;i++)f[i]=i;
        for(ll i=1;i<=m;i++)
        {
            Edge e=a[i];//
            ll fx=gf(e.from,f),fy=gf(e.to,f);
            if (fx!=fy)//
    	{
                f[fx]=fy;
                num++;
                sum+=e.val;
                AddEdge(e.to,e.from,e.val);
                AddEdge(e.from,e.to,e.val);
    	}
            if (num==n-1)break;
        }
        return sum;
    }
    void dfs(ll x,ll pre)
    {
        dp[x]=dp[pre]+1;
        fu[x][0]=pre;
        for(ll i=last[x];i;i=edges[i].s)
        {
            Edge &e=edges[i];
            if (e.to==pre)continue;
            mx[e.to][0]=e.val;
            dfs(e.to,x);
        }
    }
    void init_ST(ll n)
    {
        mm[0]=-1;
        for(ll i=1;i<=n;i++) mm[i]=(i&(i-1))==0?mm[i-1]+1:mm[i-1];
        for(ll i=1;i<=20;i++)
            for(ll j=1;j<=n;j++)
            {
                fu[j][i]=fu[fu[j][i-1]][i-1];
                mx[j][i]=max(mx[j][i-1],mx[fu[j][i-1]][i-1]);
            }
    }
    ll get_max(ll x,ll y)
    {
        ll ans=0;
        if (dp[x]<dp[y])swap(x,y);
        for(ll i=mm[dp[x]-dp[y]];i>=0;i--)
            if (dp[fu[x][i]]>=dp[y])
            {
                ans=max(ans,mx[x][i]);
                x=fu[x][i];
            }
        if (x==y)return ans;
        for(ll i=mm[dp[x]-1];i>=0;i--)
            if (fu[x][i]!=fu[y][i])
            {
                ans=max(ans,mx[x][i]);
                ans=max(ans,mx[y][i]);
                x=fu[x][i];
                y=fu[y][i];
            }
        ans=max(ans,mx[x][0]);
        ans=max(ans,mx[y][0]);
        return ans;
    }
    int main()
    {
    #ifndef ONLINE_JUDGE
        freopen("aa.in","r",stdin);
    #endif
        read(n); read(m);
        for(ll i=1;i<=m;i++)
        {
            ll x,y,z;
            read(x); read(y); read(z);
            a[i]=Edge{x,y,z,0};
        }
        ll sum=MST(a);
        dfs(1,0);
        init_ST(n);
        for(ll i=1;i<=m;i++)
        {
            ll ans=sum-get_max(a[i].from,a[i].to)+a[i].val;
            printf("%lld
    ",ans);
        }
    }
    
    
  • 相关阅读:
    paper 113:Bhattacharyya distance
    (ZT)算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)
    (ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)
    (ZT)算法杂货铺——分类算法之决策树(Decision tree)
    (ZT)算法杂货铺——k均值聚类(K-means)
    超详细的遗传算法(Genetic Algorithm)解析
    Ontology理论研究和应用建模
    观察者模式(Observer)和发布(Publish/订阅模式(Subscribe)的区别
    程序员常用字体(vs2008字体修改方案)
    雾计算和边缘计算的区别
  • 原文地址:https://www.cnblogs.com/mmmqqdd/p/10828878.html
Copyright © 2011-2022 走看看