zoukankan      html  css  js  c++  java
  • OpenJudge/Poj 1723 SOLDIERS

    1.链接地址:

    http://bailian.openjudge.cn/practice/1723/

    http://poj.org/problem?id=1723

    2.题目:

    总时间限制:
    1000ms
    内存限制:
    65536kB
    描述
    N soldiers of the land Gridland are randomly scattered around the country.
    A position in Gridland is given by a pair (x,y) of integer coordinates. Soldiers can move - in one move, one soldier can go one unit up, down, left or right (hence, he can change either his x or his y coordinate by 1 or -1).

    The soldiers want to get into a horizontal line next to each other (so that their final positions are (x,y), (x+1,y), ..., (x+N-1,y), for some x and y). Integers x and y, as well as the final order of soldiers along the horizontal line is arbitrary.

    The goal is to minimise the total number of moves of all the soldiers that takes them into such configuration.

    Two or more soldiers must never occupy the same position at the same time.
    输入
    The first line of the input contains the integer N, 1 <= N <= 10000, the number of soldiers.
    The following N lines of the input contain initial positions of the soldiers : for each i, 1 <= i <= N, the (i+1)st line of the input file contains a pair of integers x[i] and y[i] separated by a single blank character, representing the coordinates of the ith soldier, -10000 <= x[i],y[i] <= 10000.
    输出
    The first and the only line of the output should contain the minimum total number of moves that takes the soldiers into a horizontal line next to each other.
    样例输入
    5
    1 2
    2 2
    1 3
    3 -2
    3 3
    
    样例输出
    8
    来源
    CEOI 1998

    3.思路:

    4.代码:

     1 //1723_01.cpp
     2 //2010-04-09 by wuzhihui
     3 
     4 
     5 #include<iostream>
     6 #include<cstdio>
     7 #include <cmath>
     8 
     9 using namespace std;
    10 int x[10002],y[10002],c[10002];
    11 
    12 //快速排序 
    13 int Partition(int a[],int low,int high)
    14 {
    15     int temp=a[low];
    16     while(low<high)
    17     {
    18         while(low<high&&a[high]>=temp) high--;
    19         a[low]=a[high];
    20         while(low<high&&a[low]<=temp) low++;
    21         a[high]=a[low];
    22     }
    23     a[low]=temp;
    24     return low;
    25 }
    26 void QSort(int a[],int low ,int high)
    27 {
    28      int pivotloc;
    29      if(low<high)
    30      {
    31          pivotloc=Partition(a,low,high);
    32          QSort(a,low,pivotloc-1);
    33          QSort(a,pivotloc+1,high);
    34      }
    35 }
    36 void QuickSort(int a[],int size)
    37 {
    38      QSort(a,0,size-1);
    39 }
    40 
    41 long long f(int x[],int y[],int size)
    42 {
    43     int i;
    44     QuickSort(x,size);
    45     for(i=0;i<size;i++)
    46     {
    47         c[i]=x[i]-i;
    48     }
    49     QuickSort(y,size);
    50     QuickSort(c,size);
    51     long long count=0;
    52     for(i=0;i<size;i++)
    53     {
    54           count+=abs(y[i]-y[size/2])+abs(x[i]-(c[size/2]+i));
    55     }
    56     return count;
    57 }
    58 int main()
    59 {
    60     //测试快排的正确性 
    61     /*int test[10]={9,8,7,6,5,4,3,2,1,0};
    62     int testSize=10;
    63     QuickSort(test,testSize);
    64     for(int i=0;i<10;i++) {cout<<test[i]<<" ";}
    65     cout<<endl; */
    66     
    67     
    68     
    69     int size;
    70     int i,j;
    71     long long count;
    72     while((cin>>size)&&size!=0)
    73     {
    74         for(i=0;i<size;i++)
    75         {
    76             cin>>x[i]>>y[i];
    77         }
    78         
    79         //测试输入是否正确
    80         /*for(i=0;i<size;i++)
    81         {
    82           cout<<x[i]<<" "<<y[i];
    83           cout<<endl;
    84         } */
    85         
    86         count=f(x,y,size);
    87         printf("%lld
    ",count);
    88     }
    89     
    90     //system("pause");
    91     return 1;
    92 }
  • 相关阅读:
    POJ 3026
    POJ 1258
    POJ 1751
    一种用于三维物体建模的精确、鲁棒的距离图像配准算法
    人脸识别技术介绍和表情识别最新研究
    汇总|实时性语义分割算法(共24篇)
    ECCV2020最佳论文解读之递归全对场变换(RAFT)光流计算模型
    三维重建的定位定姿算法
    多视图几何三维重建实战系列- Cascade-MVSNet
    HybridPose:混合表示下的6D对象姿态估计
  • 原文地址:https://www.cnblogs.com/mobileliker/p/3570515.html
Copyright © 2011-2022 走看看