zoukankan      html  css  js  c++  java
  • paper 147:Deep Learning -- Face Data Augmentation(一)

    1. 在深度学习中,当数据量不够大时候,常常采用下面4中方法:

     (1)人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation

     (2)Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter. 详见

     (3)Dropout. 这也是一种正则化手段. 不过跟以上不同的是它通过随机将部分神经元的输出置零来实现. 详见

     (4)Unsupervised Pre-training. 用Auto-Encoder或者RBM的卷积形式一层一层地做无监督预训练, 最后加上分类层做有监督的Fine-Tuning. 参考 
     

    不同的任务背景下, 我们可以通过图像的几何变换, 使用以下一种或多种组合数据增强变换来增加输入数据的量. 这里具体的方法都来自数字图像处理的内容, 相关的知识点介绍, 网上都有, 就不一一介绍了.

    • 旋转 | 反射变换(Rotation/reflection): 随机旋转图像一定角度; 改变图像内容的朝向;
    • 翻转变换(flip): 沿着水平或者垂直方向翻转图像;
    • 缩放变换(zoom): 按照一定的比例放大或者缩小图像;
    • 平移变换(shift): 在图像平面上对图像以一定方式进行平移; 
      可以采用随机或人为定义的方式指定平移范围和平移步长, 沿水平或竖直方向进行平移. 改变图像内容的位置;
    • 尺度变换(scale): 对图像按照指定的尺度因子, 进行放大或缩小; 或者参照SIFT特征提取思想, 利用指定的尺度因子对图像滤波构造尺度空间. 改变图像内容的大小或模糊程度;
    • 对比度变换(contrast): 在图像的HSV颜色空间,改变饱和度S和V亮度分量,保持色调H不变. 对每个像素的S和V分量进行指数运算(指数因子在0.25到4之间), 增加光照变化;
    • 噪声扰动(noise): 对图像的每个像素RGB进行随机扰动, 常用的噪声模式是椒盐噪声和高斯噪声;
    • 颜色变换(color): 在训练集像素值的RGB颜色空间进行PCA, 得到RGB空间的3个主方向向量,3个特征值, p1, p2, p3, λ1, λ2, λ3. 对每幅图像的每个像素Ixy=[IRxy,IGxy,IBxy]T进行加上如下的变化:

                                            [p1,p2,p3][α1λ1,α2λ2,α3λ3]T

          :αi0,0.1.

    代码实现

         作为实现部分, 这里介绍一下在python 环境下, 利用已有的开源代码库Keras作为实践:

    复制代码
     1 # -*- coding: utf-8 -*-
     2 __author__ = 'Administrator'
     3 
     4 # import packages
     5 from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
     6 
     7 datagen = ImageDataGenerator(
     8         rotation_range=0.2,
     9         width_shift_range=0.2,
    10         height_shift_range=0.2,
    11         shear_range=0.2,
    12         zoom_range=0.2,
    13         horizontal_flip=True,
    14         fill_mode='nearest')
    15 
    16 img = load_img('C:UsersAdministratorDesktopdataAlena.jpg')  # this is a PIL image, please replace to your own file path
    17 x = img_to_array(img)  # this is a Numpy array with shape (3, 150, 150)
    18 x = x.reshape((1,) + x.shape)  # this is a Numpy array with shape (1, 3, 150, 150)
    19 
    20 # the .flow() command below generates batches of randomly transformed images
    21 # and saves the results to the `preview/` directory
    22 
    23 i = 0
    24 for batch in datagen.flow(x,
    25                           batch_size=1,
    26                           save_to_dir='C:UsersAdministratorDesktopdataApre',#生成后的图像保存路径
    27                           save_prefix='lena',
    28                           save_format='jpg'):
    29     i += 1
    30     if i > 20:
    31         break  # otherwise the generator would loop indefinitely
    复制代码

     

    主要函数:ImageDataGenerator 实现了大多数上文中提到的图像几何变换方法.

    • rotation_range: 旋转范围, 随机旋转(0-180)度;
    • width_shift and height_shift: 随机沿着水平或者垂直方向,以图像的长宽小部分百分比为变化范围进行平移;
    • rescale: 对图像按照指定的尺度因子, 进行放大或缩小, 设置值在0 - 1之间,通常为1 / 255;
    • shear_range: 水平或垂直投影变换, 参考这里 https://keras.io/preprocessing/image/
    • zoom_range: 按比例随机缩放图像尺寸;
    • horizontal_flip: 水平翻转图像;
    • fill_mode: 填充像素, 出现在旋转或平移之后.

    主要函数:ImageDataGenerator 实现了大多数上文中提到的图像几何变换方法.函数原型如下

     1 keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,
     2     samplewise_center=False,
     3     featurewise_std_normalization=False,
     4     samplewise_std_normalization=False,
     5     zca_whitening=False,
     6     rotation_range=0.,
     7     width_shift_range=0.,
     8     height_shift_range=0.,
     9     shear_range=0.,
    10     zoom_range=0.,
    11     channel_shift_range=0.,
    12     fill_mode='nearest',
    13     cval=0.,
    14     horizontal_flip=False,
    15     vertical_flip=False,
    16     rescale=None,
    17     dim_ordering=K.image_dim_ordering())

    参数解释:

    featurewise_center:布尔值,使输入数据集去中心化(均值为0)
    samplewise_center:布尔值,使输入数据的每个样本均值为0
    featurewise_std_normalization:布尔值,将输入除以数据集的标准差以完成标准化
    samplewise_std_normalization:布尔值,将输入的每个样本除以其自身的标准差
    zca_whitening:布尔值,对输入数据施加ZCA白化
    rotation_range:整数,数据提升时图片随机转动的角度
    width_shift_range:浮点数,图片宽度的某个比例,数据提升时图片水平偏移的幅度
    height_shift_range:浮点数,图片高度的某个比例,数据提升时图片竖直偏移的幅度
    shear_range:浮点数,剪切强度(逆时针方向的剪切变换角度)
    zoom_range:浮点数或形如[lower,upper]的列表,随机缩放的幅度,若为浮点数,则相当于[lower,upper] = [1 - zoom_range, 1+zoom_range]
    channel_shift_range:浮点数,随机通道偏移的幅度
    fill_mode:;‘constant’,‘nearest’,‘reflect’或‘wrap’之一,当进行变换时超出边界的点将根据本参数给定的方法进行处理
    cval:浮点数或整数,当fill_mode=constant时,指定要向超出边界的点填充的值
    horizontal_flip:布尔值,进行随机水平翻转
    vertical_flip:布尔值,进行随机竖直翻转
    rescale: 重放缩因子,默认为None. 如果为None或0则不进行放缩,否则会将该数值乘到数据上(在应用其他变换之前)
    dim_ordering:‘tf’和‘th’之一,规定数据的维度顺序。‘tf’模式下数据的形状为samples, width, height, channels,‘th’下形状为(samples, channels, width, height).该参数的默认值是Keras配置文件~/.keras/keras.json的image_dim_ordering值,如果你从未设置过的话,就是'th'
    

    tensorflow中的部分数据增强

     1 import tensorflow as tf
     2 import cv2
     3 import numpy as np
     4 
     5 flags = tf.app.flags
     6 FLAGS = flags.FLAGS
     7 flags.DEFINE_boolean('random_flip_up_down', True, 'If uses flip')
     8 flags.DEFINE_boolean('random_flip_left_right', True, 'If uses flip')
     9 flags.DEFINE_boolean('random_brightness', True, 'If uses brightness')
    10 flags.DEFINE_boolean('random_contrast', True, 'If uses contrast')
    11 flags.DEFINE_boolean('random_saturation', True, 'If uses saturation')
    12 flags.DEFINE_integer('image_size', 224, 'image size.')
    13 
    14 """
    15 #flags examples
    16 flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
    17 flags.DEFINE_integer('max_steps', 2000, 'Number of steps to run trainer.')
    18 flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
    19 flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data for unit testing.')
    20 """
    21 def pre_process(images): 
    22     if FLAGS.random_flip_up_down: 
    23     images = tf.image.random_flip_up_down(images) 
    24     if FLAGS.random_flip_left_right: 
    25     images = tf.image.random_flip_left_right(images) 
    26     if FLAGS.random_brightness: 
    27         images = tf.image.random_brightness(images, max_delta=0.3) 
    28     if FLAGS.random_contrast: 
    29         images = tf.image.random_contrast(images, 0.8, 1.2)
    30     if FLAGS.random_saturation:
    31     tf.image.random_saturation(images, 0.3, 0.5)
    32     new_size = tf.constant([FLAGS.image_size,FLAGS.image_size],dtype=tf.int32)
    33     images = tf.image.resize_images(images, new_size)
    34     return images
    35 
    36 raw_image = cv2.imread("004545.jpg")
    37 #image = tf.Variable(raw_image)
    38 image = tf.placeholder("uint8",[None,None,3])
    39 images = pre_process(image)
    40 with tf.Session() as session:
    41     result = session.run(images, feed_dict={image: raw_image})
    42 cv2.imshow("image",result.astype(np.uint8))
    43 cv2.waitKey(1000)

    效果如下图所示:

    2. 几种常使用的data augmentation方法总结

      (1) Color Jittering:对颜色的数据增强:图像亮度、饱和度、对比度变化(此处对色彩抖动的理解不知是否得当);

      (2) PCA  Jittering:首先按照RGB三个颜色通道计算均值和标准差,再在整个训练集上计算协方差矩阵,进行特征分解,得到特征向量和特征值,用来做PCA Jittering

      (3) Random Scale:尺度变换;

      (4) Random Crop:采用随机图像差值方式,对图像进行裁剪、缩放;包括Scale Jittering方法(VGG及ResNet模型使用)或者尺度和长宽比增强变换;

      (5) Horizontal/Vertical Flip:水平/垂直翻转;

      (6)5Shift:平移变换;

      (7) Rotation/Reflection:旋转/仿射变换;

      (8) Noise:高斯噪声、模糊处理;

      (9) Label shuffle:类别不平衡数据的增广,参见海康威视ILSVRC2016的报告,里面提到了一种监督数据扩展方法(supervised data sugmentation).

     

     

     

     

     

    参考来源:http://blog.csdn.net/mduanfire/article/details/51674098

                      https://zhuanlan.zhihu.com/p/23249000

     

  • 相关阅读:
    算法的时间与空间复杂度(一看就懂)
    技术人更应该学会即兴表达
    架构设计之「数据库集群方案」
    架构设计之「数据库从主备到主主的高可用方案」
    网络中的「动态路由算法」,你了解吗?
    当你「ping 一下」的时候,你知道它背后的逻辑吗?
    不懂高性能的负载均衡设计?没关系,架构师带你飞
    piwik流量统计系统搭建(apache2.4+piwik+mysql5.6+php5.6.14)
    SQL Server 之 GROUP BY、GROUPING SETS、ROLLUP、CUBE
    CAS 实现单点登录 .NET MVC
  • 原文地址:https://www.cnblogs.com/molakejin/p/7878934.html
Copyright © 2011-2022 走看看