字典树中根到每个结点对应原串集合的一个前缀,这个前缀由路径上所有转移边对应的字母构成。我们可以对每个结点维护一些需要的信息,这样即可以去做很多事情。
#10049. 「一本通 2.3 例 1」Phone List
#include <bits/stdc++.h>
using namespace std;
namespace Trie {
struct Node {
Node *ch[10];
int val;
Node* clear() {
for(int i=0;i<10;i++) ch[i]=NULL;
val=0;
return this;
}
};
Node *root;
Node pool[1000005];
int ind=0;
Node* newnode() {
return pool[ind++].clear();
}
void clear() {
ind=0;
root=newnode();
}
void insert(string s) {
Node *pos=root;
for(int i=0;i<s.length();i++) {
if(pos->ch[s[i]]==NULL) pos->ch[s[i]]=newnode();
pos->val++;
pos=pos->ch[s[i]];
}
}
int query(string s) {
Node *pos=root;
for(int i=0;i<s.length();i++) {
if(pos->ch[s[i]]==NULL) return 0;
pos=pos->ch[s[i]];
}
return pos->val;
}
string str[10005];
void solve() {
int n;
cin>>n;
clear();
for(int i=1;i<=n;i++) {
cin>>str[i];
for(int j=0;j<str[i].length();j++) str[i][j] -= '0';
insert(str[i]);
}
int flag=0;
for(int i=1;i<=n;i++) {
if(query(str[i])) {
flag=1;
break;
}
}
if(flag) cout<<"NO"<<endl;
else cout<<"YES"<<endl;
}
}
int main() {
int t;
ios::sync_with_stdio(false);
cin>>t;
while(t--) Trie::solve();
return 0;
}
#10050. 「一本通 2.3 例 2」The XOR Largest Pair
0-1 Trie通常用于异或相关的问题,思路是记录所有01串后,我们找最大异或和的时候可以从高位到低位贪心,此时Trie发挥的作用就是在当前前缀已经选择的情况下,能使得正在考虑位异或为1的后缀是否存在。
#include <bits/stdc++.h>
using namespace std;
namespace Trie {
struct Node {
Node *ch[2];
Node *clear() {
ch[0] = ch[1] = 0;
return this; // Don't forget this
}
};
Node *root;
Node pool[4000005];
int ind;
Node *newnode() { return pool[ind++].clear(); }
void insert(int x) {
Node *pos = root;
for (int i = 30; i >= 0; --i) {
int b = (x / (1 << i)) & 1;
if (pos->ch[b] == NULL)
pos->ch[b] = newnode();
pos = pos->ch[b];
}
}
int query(int x) {
Node *pos = root;
int ans = 0;
for (int i = 30; i >= 0 && pos != NULL; --i) {
int b = (x / (1 << i)) & 1;
if (pos->ch[b ^ 1] != NULL)
pos = pos->ch[b ^ 1], ans += (1 << i);
else
pos = pos->ch[b];
}
return ans;
}
int a[1000005];
void solve() {
int n, ans = 0;
cin >> n;
root = newnode(); // Don't forget this
for (int i = 1; i <= n; i++) cin >> a[i], insert(a[i]);
for (int i = 1; i <= n; i++) ans = max(ans, query(a[i]));
cout << ans << endl;
}
} // namespace Trie
int main() {
ios::sync_with_stdio(false);
Trie::solve();
}
#10051. 「一本通 2.3 例 3」Nikitosh 和异或
看到这个算式我们很容易想到前缀和转化。问题转化为求s[r1]^s[l1-1] + s[r2]^s[l2-1]最大。
由于要r1<l2,所以可考虑去处理出一个前缀max和一个后缀max,然后枚举分界点。那么答案就是
Max{pre[i]+suf[i+1]}
#include <bits/stdc++.h>
using namespace std;
namespace Trie {
struct Node {
Node *ch[2];
Node *clear() {
ch[0] = ch[1] = 0;
return this; // Don't forget this
}
};
Node *root;
Node pool[8000005];
int ind;
Node *newnode() { return pool[ind++].clear(); }
void insert(int x) {
Node *pos = root;
for (int i = 30; i >= 0; --i) {
int b = (x / (1 << i)) & 1;
if (pos->ch[b] == NULL)
pos->ch[b] = newnode();
pos = pos->ch[b];
}
}
int query(int x) {
Node *pos = root;
int ans = 0;
for (int i = 30; i >= 0 && pos != NULL; --i) {
int b = (x / (1 << i)) & 1;
if (pos->ch[b ^ 1] != NULL)
pos = pos->ch[b ^ 1], ans += (1 << i);
else
pos = pos->ch[b];
}
return ans;
}
int a[1000005], pre[1000005], suf[1000005];
void solve() {
int n, ans = 0;
cin >> n;
root = newnode(); // Don't forget this
for (int i = 1; i <= n; i++) cin >> a[i], insert(a[i]), pre[i] = max(pre[i - 1], query(a[i]));
ind = 0;
root = newnode();
reverse(a + 1, a + n + 1);
for (int i = 1; i <= n; i++) insert(a[i]), suf[i] = max(suf[i - 1], query(a[i]));
reverse(suf + 1, suf + n + 1);
for (int i = 1; i < n; i++) ans = max(ans, pre[i] + suf[i + 1]);
cout << ans << endl;
}
} // namespace Trie
int main() {
ios::sync_with_stdio(false);
Trie::solve();
}
#10052. 「一本通 2.3 练习 1」Immediate Decodability
和前面那题一样
#include <bits/stdc++.h>
using namespace std;
namespace Trie {
struct Node {
Node *ch[2];
int val;
Node *clear() {
for (int i = 0; i < 2; i++) ch[i] = NULL;
val = 0;
return this;
}
};
Node *root;
Node pool[1000005];
int ind = 0;
Node *newnode() { return pool[ind++].clear(); }
void clear() {
ind = 0;
root = newnode();
}
void insert(string s) {
Node *pos = root;
for (int i = 0; i < s.length(); i++) {
if (pos->ch[s[i]] == NULL)
pos->ch[s[i]] = newnode();
pos->val++;
pos = pos->ch[s[i]];
}
}
int query(string s) {
Node *pos = root;
for (int i = 0; i < s.length(); i++) {
if (pos->ch[s[i]] == NULL)
return 0;
pos = pos->ch[s[i]];
}
return pos->val;
}
string str[10005];
bool solve(int t) {
clear();
int n = 0;
while (cin >> str[++n]) {
if (str[n][0] == '9')
break;
for (int j = 0; j < str[n].length(); j++) str[n][j] -= '0';
insert(str[n]);
}
--n;
if (n <= 0)
return false;
int flag = 0;
for (int i = 1; i <= n; i++) {
if (query(str[i])) {
flag = 1;
break;
}
}
if (flag)
cout << "Set " << t << " is not immediately decodable" << endl;
else
cout << "Set " << t << " is immediately decodable" << endl;
return true;
}
} // namespace Trie
int main() {
int t = 0;
ios::sync_with_stdio(false);
while (Trie::solve(++t))
;
return 0;
}
#10053. 「一本通 2.3 练习 2」L 语言
我们记录u[i]表示文章的每一个前缀s[1..i]是否可被理解。做一个类似dp的处理即可。
刚开始忘记传引用T了半天……
#include <bits/stdc++.h>
using namespace std;
char buf[1000005];
void readstr(string &tar) {
scanf("%s", buf);
tar = buf;
}
int __cnt = 0;
namespace Trie {
struct Node {
Node *ch[26];
int val;
Node *clear() {
for (int i = 0; i < 26; i++) ch[i] = NULL;
val = 0;
return this;
}
};
Node *root;
Node pool[5000005];
int u[1000005];
int ind = 0, ans = 0;
Node *newnode() { return pool[ind++].clear(); }
void clear() {
ind = 0;
root = newnode();
}
void insert(string &s) {
Node *pos = root;
for (int i = 0; i < s.length(); i++) {
if (pos->ch[s[i]] == NULL)
pos->ch[s[i]] = newnode();
pos = pos->ch[s[i]];
}
pos->val++;
}
void query(string &s, int start) {
Node *pos = root;
int len = s.length();
for (int i = start; i < len; i++) {
__cnt++;
if (pos->ch[s[i]] == NULL)
return;
pos = pos->ch[s[i]];
if (pos->val)
u[i + 1] = 1, ans = max(ans, i + 1);
}
}
string str[1005];
string art;
void solve() {
int n, m;
scanf("%d%d", &n, &m);
clear();
for (int i = 1; i <= n; i++) {
readstr(str[i]);
for (int j = 0; j < str[i].length(); j++) str[i][j] -= 'a';
insert(str[i]);
}
for (int i = 1; i <= m; i++) {
ans = 0;
memset(u, 0, sizeof u);
readstr(art);
int len = art.length();
for (int j = 0; j < len; j++) art[j] -= 'a';
u[0] = 1;
for (int j = 0; j < len; j++) {
if (u[j] == 0)
continue;
query(art, j);
}
cout << ans << endl;
}
}
} // namespace Trie
int main() {
int t;
ios::sync_with_stdio(false);
Trie::solve();
// cout<<__cnt<<endl;
return 0;
}
#10054. 「一本通 2.3 练习 3」Secret Message 秘密信息
对信息建Trie,仍然是在每个串的结束点上打标记。结果就等于把密码串丢上去跑,跑的路径上的标记和,加上最终停在的结点(如果整个密码串都成功匹配)的子树的标记和。前一个直接记录,后一个用树上前缀和预处理一下即可。
#include <bits/stdc++.h>
using namespace std;
namespace Trie {
struct Node {
Node *ch[2];
int val, sum;
Node *clear() {
for (int i = 0; i < 2; i++) ch[i] = NULL;
val = sum = 0;
return this;
}
};
Node *root;
Node pool[1000005];
int ind = 0;
Node *newnode() { return pool[ind++].clear(); }
void clear() {
ind = 0;
root = newnode();
}
void insert(int len) {
Node *pos = root;
for (int i = 0; i < len; i++) {
int si;
cin >> si;
if (pos->ch[si] == NULL)
pos->ch[si] = newnode();
pos = pos->ch[si];
}
pos->val++;
}
void dfs(Node *p) {
if (p == NULL)
return;
dfs(p->ch[0]);
dfs(p->ch[1]);
p->sum = p->val;
if (p->ch[0])
p->sum += p->ch[0]->sum;
if (p->ch[1])
p->sum += p->ch[1]->sum;
}
int query(int len) {
Node *pos = root;
int ans = 0;
for (int i = 0; i < len; i++) {
int si;
cin >> si;
ans += pos->val;
if (pos->ch[si] == NULL) {
for (int j = 1; j <= len - i - 1; j++) cin >> si;
return ans;
}
pos = pos->ch[si];
}
return ans + pos->sum;
}
string str[10005];
void solve() {
int m, n;
cin >> m >> n;
clear();
for (int i = 1; i <= m; i++) {
int len;
cin >> len;
insert(len);
}
dfs(root);
for (int i = 1; i <= n; i++) {
int len;
cin >> len;
cout << query(len) << endl;
}
}
} // namespace Trie
int main() {
int t;
ios::sync_with_stdio(false);
Trie::solve();
return 0;
}
#10056. 「一本通 2.3 练习 5」The XOR-longest Path
树上前缀异或和以后直接转化为两点最大异或和。其实用欧拉序也可以。
#include <bits/stdc++.h> using namespace std; namespace Trie { struct Node { Node *ch[2]; Node* clear() { ch[0]=ch[1]=0; return this; // Don't forget this } }; Node *root; Node pool[4000005]; int ind; Node* newnode() { return pool[ind++].clear(); } void insert(int x) { Node *pos = root; for(int i=30;i>=0;--i) { int b=(x/(1<<i))&1; if(pos->ch[b]==NULL) pos->ch[b]=newnode(); pos=pos->ch[b]; } } int query(int x) { Node *pos = root; int ans = 0; for(int i=30;i>=0 && pos!=NULL;--i) { int b=(x/(1<<i))&1; if(pos->ch[b^1]!=NULL) pos=pos->ch[b^1], ans+=(1<<i); else pos=pos->ch[b]; } return ans; } int a[1000005]; void solve(int n) { int ans=0; root=newnode(); // Don't forget this for(int i=1;i<=n;i++) insert(a[i]); for(int i=1;i<=n;i++) ans=max(ans,query(a[i])); cout<<ans<<endl; } } int n,vis[1000005]; vector<pair<int,int> > g[1000005]; void dfs(int p) { vis[p]=1; for(int i=0;i<g[p].size();i++) { int q=g[p][i].first; if(vis[q]==0) { Trie::a[q]=Trie::a[p] ^ g[p][i].second; dfs(q); } } } int main() { ios::sync_with_stdio(false); cin>>n; for(int i=1;i<n;i++) { int u,v,w; cin>>u>>v>>w; g[u].push_back(make_pair(v,w)); g[v].push_back(make_pair(u,w)); } dfs(1); Trie::solve(n); }