[BZOJ3277] 串
Description
现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串(注意包括本身)。
Solution
首先将所有串连接起来,预处理出后缀数组和高度数组。
显然直接主席树可以很容易做到 (O(n log^2 n)) 。对于每一个后缀的位置,二分一个 LCP 长度,找到这个 LCP 长度对应的区间,检查这个区间是否合法来调节二分边界。
注意在这个做法里,瓶颈不在于主席树,因为主席树的功能完全可以用双指针预处理一个数组来替代。瓶颈在于,实质上使用了一个二分套二分的做法。
但我们有更好的做法。
引理:按照原始顺序,如果第 (i) 个后缀有 (x) 个前缀能被 (k) 个串包含,那么第 (i+1) 个后缀至少有 (x-1) 个前缀能被 (k) 个串包含。
那么我们先用双指针预处理 (jmp[i]) 代表按照后缀排序,最大的 (j) 使得 ([j,i]) 这个后缀区间合法。
到第 (i) 个后缀的时候我们就从后缀 (i-1) 的答案开始向上枚举,用二分+ST表找出它左右边第一个高度比当前枚举值小的位置,判断这个区间的合法性来决定是否继续枚举,均摊时间复杂度 (O(nlogn)) 。
(O(log n)) 解法
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 400005;
int n,m=N/2,sa[N],y[N],u[N],v[N],o[N],r[N],h[N],T,nstr,k;
int str[N],Log2[N],bel[N],buf[N],bcnt,jmp[N],mx[N],ans[N],tow[N];
char tstr[N];
struct St {
int a[N][21];
void build(int *src,int n) {
for(int i=1;i<=n;i++) a[i][0]=src[i];
for(int i=1;i<=20;i++)
for(int j=1;j<=n-(1<<i)+1;j++)
a[j][i]=min(a[j][i-1],a[j+(1<<(i-1))][i-1]);
}
int query(int l,int r) {
if(l>r) return 0;
int j=Log2[r-l+1];
return min(a[l][j],a[r-(1<<j)+1][j]);
}
} st;
int lbound(int cen,int val) {
int l=1,r=cen;
while(r>l) {
int mid=(l+r)/2;
if(st.query(mid+1,cen)>=val) r=mid;
else l=mid+1;
}
return l;
}
int rbound(int cen,int val) {
int l=cen+1,r=n+1;
while(r>l) {
int mid=(l+r)/2;
if(st.query(cen+1,mid)>=val) l=mid+1;
else r=mid;
}
return l-1;
}
signed main(){
for(int i=1;i<=200000;i++) Log2[i]=log2(i);
scanf("%lld%lld",&nstr,&k);
for(int i=1;i<=nstr;i++) {
scanf("%s",tstr);
int len=strlen(tstr);
for(int j=0;j<len;j++) str[j+n+1]=tstr[j],bel[j+n+1]=i,tow[j+n+1]=n+len;
n+=len+1;
str[n]=127+i;
}
for(int i=1;i<=n;i++) u[str[i]]++;
for(int i=1;i<=m;i++) u[i]+=u[i-1];
for(int i=n;i>=1;i--) sa[u[str[i]]--]=i;
r[sa[1]]=1;
for(int i=2;i<=n;i++) r[sa[i]]=r[sa[i-1]]+(str[sa[i]]!=str[sa[i-1]]);
for(int l=1;r[sa[n]]<n;l<<=1) {
memset(u,0,sizeof u);
memset(v,0,sizeof v);
memcpy(o,r,sizeof r);
for(int i=1;i<=n;i++) u[r[i]]++, v[r[i+l]]++;
for(int i=1;i<=n;i++) u[i]+=u[i-1], v[i]+=v[i-1];
for(int i=n;i>=1;i--) y[v[r[i+l]]--]=i;
for(int i=n;i>=1;i--) sa[u[r[y[i]]]--]=y[i];
r[sa[1]]=1;
for(int i=2;i<=n;i++) r[sa[i]]=r[sa[i-1]]+((o[sa[i]]!=o[sa[i-1]])||(o[sa[i]+l]!=o[sa[i-1]+l]));
}
{
int i,j,k=0;
for(int i=1;i<=n;h[r[i++]]=k)
for(k?k--:0,j=sa[r[i]-1];str[i+k]==str[j+k];k++);
}
st.build(h,n);
bcnt=1;
buf[bel[sa[n]]]++;
for(int i=n,j=n;i>=1;--i) {
while(bcnt<k && j>0) {
--j;
if(buf[bel[sa[j]]]==0) ++bcnt;
buf[bel[sa[j]]]++;
}
jmp[i]=j;
if(buf[bel[sa[i]]]==1) --bcnt;
buf[bel[sa[i]]]--;
}
// for(int i=1;i<=n;i++) cout<<jmp[i]<<" "; cout<<endl;
for(int i=1;i<=n;i++) {
for(int j=max(1ll,mx[i-1]);j<=n;j++) {
int lb=lbound(r[i],j), rb=rbound(r[i],j);
//cout<<i<<" "<<r[i]<<" "<<j<<" "<<lb<<" "<<rb<<endl;
if(jmp[rb]<lb || j>tow[i]-i+1) {
mx[i]=j-1;
break;
}
}
}
//for(int i=1;i<=n;i++) cout<<mx[i]<<" ";
//cout<<endl;
for(int i=1;i<=n;i++) {
ans[bel[i]]+=mx[i];
}
for(int i=1;i<=nstr;i++) printf("%lld ",ans[i]);
}
(O(log^2 n)) 解法 (TLE)
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 400005;
int n,m=N/2,sa[N],y[N],u[N],v[N],o[N],r[N],h[N],jmp[N],buf[N],bel[N],bcnt;
int nstr,k;
int str[N],ans[N],tow[N],LOG2[N];
char tstr[N];
struct St {
int a[N][21];
void build(int *src,int n) {
for(int i=1;i<=n;i++) a[i][0]=src[i];
for(int i=1;i<=20;i++)
for(int j=1;j<=n-(1<<i)+1;j++)
a[j][i]=min(a[j][i-1],a[j+(1<<(i-1))][i-1]);
}
int query(int l,int r) {
if(l>r) return 0;
int j=LOG2[r-l+1];
return min(a[l][j],a[r-(1<<j)+1][j]);
}
} st;
int lbound(int cen,int val) {
int l=1,r=cen;
while(r-l) {
int mid=(l+r)/2;
if(st.query(mid+1,cen)>=val) r=mid;
else l=mid+1;
}
return l;
}
int rbound(int cen,int val) {
int l=cen+1,r=n+1;
while(r-l) {
int mid=(l+r)/2;
if(st.query(cen+1,mid)>=val) l=mid+1;
else r=mid;
}
return l-1;
}
signed main(){
for(int i=1;i<=200000;i++) LOG2[i]=log2(i);
scanf("%d%d",&nstr,&k);
for(int i=1;i<=nstr;i++) {
scanf("%s",tstr);
int tstrlength = strlen(tstr);
for(int j=0;j<tstrlength;j++)
str[n+j+1]=tstr[j],bel[n+j+1]=i,tow[n+j+1]=n+tstrlength;
n+=tstrlength+1;
str[n]=127+i;
}
for(int i=1;i<=n;i++) u[str[i]]++;
for(int i=1;i<=m;i++) u[i]+=u[i-1];
for(int i=n;i>=1;i--) sa[u[str[i]]--]=i;
r[sa[1]]=1;
for(int i=2;i<=n;i++) r[sa[i]]=r[sa[i-1]]+(str[sa[i]]!=str[sa[i-1]]);
for(int l=1;r[sa[n]]<n;l<<=1) {
memset(u,0,sizeof u);
memset(v,0,sizeof v);
memcpy(o,r,sizeof r);
for(int i=1;i<=n;i++) u[r[i]]++, v[r[i+l]]++;
for(int i=1;i<=n;i++) u[i]+=u[i-1], v[i]+=v[i-1];
for(int i=n;i>=1;i--) y[v[r[i+l]]--]=i;
for(int i=n;i>=1;i--) sa[u[r[y[i]]]--]=y[i];
r[sa[1]]=1;
for(int i=2;i<=n;i++) r[sa[i]]=r[sa[i-1]]+((o[sa[i]]!=o[sa[i-1]])||(o[sa[i]+l]!=o[sa[i-1]+l]));
}
{
int i,j,k=0;
for(int i=1;i<=n;h[r[i++]]=k)
for(k?k--:0,j=sa[r[i]-1];str[i+k]==str[j+k];k++);
}
st.build(h,n);
buf[bel[sa[n]]]=1; bcnt++;
for(int i=n,j=n;i>=1;--i) {
while(bcnt<k && j>0) {
--j;
if(buf[bel[sa[j]]]==0) bcnt++;
buf[bel[sa[j]]]++;
}
jmp[i]=j;
buf[bel[sa[i]]]--;
if(buf[bel[sa[i]]]==0) bcnt--;
}
for(int i=1;i<=n;i++) {
int l=1,r=tow[sa[i]]-sa[i]+2;
while(r>l) {
int mid=(l+r)/2;
int lb=lbound(i,mid),rb=rbound(i,mid);
if(jmp[rb]>=lb) l=mid+1;
else r=mid;
}
//cout<<i<<" "<<l-1<<endl;
ans[bel[sa[i]]]+=l-1;
}
for(int i=1;i<=nstr;i++) printf("%lld ",ans[i]);
}