zoukankan      html  css  js  c++  java
  • [HAOI2011] Problem b

    复习一下莫比乌斯反演

    首先很显然用一下容斥把它转化成求 (ans=sum_{i=1}^a sum_{j=1}^b [{gcd(i,j)=d}])

    我们可以定义 f(d) 和 F(d) 如下:

    (f(d)=sum_{i=1}^Nsum_{j=1}^M[gcd(i,j)=d])

    (F(d)=sum_{i=1}^Nsum_{j=1}^M[d|gcd(i,j)])

    发现

    (sum_{n|d}f(d)=F(n)=lfloorfrac Nn floorlfloorfrac Mn floor)

    莫比乌斯反演,得到:

    (f(n)=sum_{n|d}mu(lfloorfrac dn floor)F(d))

    于是
    (ans=f(d)=sum_{d|p}mu(lfloorfrac pd floor)F(p))

    换个元
    (ans=sum_{p'}mu(p')F( p' d ) =sum_{p'=1}^{min(lfloorfrac Nd floor,lfloorfrac Md floor)}mu(p')lfloorfrac N{p'd} floor lfloor frac M{p'd} floor)

    (p') 写作 (p) ,得到

    (ans=sum_{p}mu(p)F( p d ) =sum_{p=1}^{min(lfloorfrac Nd floor,lfloorfrac Md floor)}mu(p)lfloorfrac N{pd} floor lfloor frac M{pd} floor)

    #include <bits/stdc++.h>
    using namespace std;
    
    #define int long long
    const int N = 1000005;
    const int MAXN = 1000005;
    
    bool isNotPrime[MAXN + 1];
    int mu[MAXN + 1], phi[MAXN + 1], primes[MAXN + 1], cnt;
    inline void euler() {
        isNotPrime[0] = isNotPrime[1] = true;
        mu[1] = 1;
        phi[1] = 1;
        for (int i = 2; i <= MAXN; i++) {
            if (!isNotPrime[i]) {
                primes[++cnt] = i;
                mu[i] = -1;
                phi[i] = i - 1;
            }
            for (int j = 1; j <= cnt; j++) {
                int t = i * primes[j];
                if (t > MAXN) break;
                isNotPrime[t] = true;
                if (i % primes[j] == 0) {
                    mu[t] = 0;
                    phi[t] = phi[i] * primes[j];
                    break;
                } else {
                    mu[t] = -mu[i];
                    phi[t] = phi[i] * (primes[j] - 1);
                }
            }
        }
        for(int i=1;i<=MAXN;i++) mu[i]+=mu[i-1];
    }
    
    int solve(int n,int m,int k) {
        n/=k; m/=k;
        if(n==0 || m==0) return 0;
        int ans=0,l=1,r=0;
        if(n>m) swap(n,m);
        while(l<=n) {
            r=min(n/(n/l),m/(m/l));
            ans+=(mu[r]-mu[l-1])*(n/l)*(m/l);
            l=r+1;
        }
        return ans;
    }
    
    signed main() {
        euler();
        int t,a,b,c,d,k;
        ios::sync_with_stdio(false);
        cin>>t;
        while(t--) {
            cin>>a>>b>>c>>d>>k; --a; --c;
            cout<<solve(b,d,k)-solve(a,d,k)-solve(b,c,k)+solve(a,c,k)<<endl;
        }
    }
    
    
    
  • 相关阅读:
    Git操作命令2-在Git仓库里管理文件历史-分支操作
    mvvmlight框架搭建VS版本不同导致的问题
    wpf命令详解
    wpf触发器
    wpf控件模型
    wpf中Interaction.Behaviors详解
    wpf附加属性详解
    wpf依赖属性概述
    wpf体系结构
    MySql5.7下载安装配置教程
  • 原文地址:https://www.cnblogs.com/mollnn/p/12291419.html
Copyright © 2011-2022 走看看