现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示。其中第二组中的数字是两两互素的。求最小的非负整数n,满足对于任意的i,n - ai能被bi整除。
Solution
即 (n=a_i mod b_i)
裸CRT
但是我很懒所以用了 EXCRT 的板子
(然后发现板子的 Note 又写错了)
#include <bits/stdc++.h>
using namespace std;
#define int long long
namespace excrt {
const int maxn=100010;
int n;
int ai[maxn],bi[maxn]; //x=b%a
int mul(int a,int b,int mod){
int res=0;
while(b>0){
if(b&1) res=(res+a)%mod;
a=(a+a)%mod;
b>>=1;
}
return res;
}
int exgcd(int a,int b,int &x,int &y){
if(b==0){x=1;y=0;return a;}
int gcd=exgcd(b,a%b,x,y);
int tp=x;
x=y; y=tp-a/b*y;
return gcd;
}
int solve(){
int x,y,k;
int M=bi[1],ans=ai[1];
for(int i=2;i<=n;i++){
int a=M,b=bi[i],c=(ai[i]-ans%b+b)%b;
int gcd=exgcd(a,b,x,y),bg=b/gcd;
if(c%gcd!=0) return -1;
x=mul(x,c/gcd,bg);
ans+=x*M;
M*=bg;
ans=(ans%M+M)%M;
}
return (ans%M+M)%M;
}
}
const int N = 15;
int a[N],b[N],n;
signed main() {
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++) cin>>b[i];
for(int i=1;i<=n;i++) a[i]=(a[i]%b[i]+b[i])%b[i];
for(int i=1;i<=n;i++) excrt::ai[i]=a[i];
for(int i=1;i<=n;i++) excrt::bi[i]=b[i];
excrt::n=n;
cout<<excrt::solve();
}