给定一个(N imes M)方格矩阵,每个格子可在(0,1,2)中取值。要求在方格的边上进行划分,使得任意联通块内不同时包含(1)和(2)的格子。
若对方格矩阵的形式感到困惑,我们可以先考虑图上的形式。
假设图中有节点(W_1),(Q_1),(S_1),(S_2),且(W_1)与其它三者间各有一边,此外(Q_1)和(S_1)间还有一边。(W_1)是1值节点,(S_1,S_2)是2值节点。现在考虑进行划分。
我们发现在原问题中,(0)值点无论和哪个点划在一个连通块内都是合法的。换言之,(0)值节点在这里只起到传导连通的作用。亦即任意两个连通节点间可以有任意个(0)值节点。
根据这一性质,我们对图进行分层。建立网络,将(W_i)作为第一层(靠近源点),(S_i)作为最后一层(靠近汇点),(Q_i)放中间。将原图中的连接关系单向地对应到网络中:
- 由(W_i)向任意点的连接均转化为一条容量为(1)的弧
- 由(S_i)向任意点的连接均被忽略
- 由(Q_i)向非(W_i)点的连接均转化为一条容量为(1)的弧
容易发现,由于原图是无向图,我们在建立流网络时对其定向,从而避免对一个划分边的重复计算。而定向的依据则是依据(W_i > Q_i > S_i)的优先级顺序进行的。
这样建图后,求出的最大流就是流网络的最小割,也就是答案。
分析完图上的情况后,这里的情形就显得简单了。
我们考虑对任意格子((i,j)),其四周的格子即是上文中与之直接相连的节点。我们将图中的关系放到方格矩阵中处理就可以了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
#define G g
using namespace std;
struct Item{int p,v,c;};
Item item(int _p,int _v,int _c){Item it;it.p=_p;it.v=_v;it.c=_c;return it;}
vector <Item> g[100005];
int n,m,t1,t2,t3,dis[100005],d[100005],vis[100005],s,t,t4,costs=0,tans,ans,inc[100005],cnt=0,k,inp[100005][4],edg[100005];
vector <int> oppo[100005];
int dinic_spfa(){
memset(dis,0xff,sizeof dis);
memset(d,0x3f,sizeof d);
memset(vis,0x00,sizeof vis);
memset(inc,0x00,sizeof inc);
queue <int> q;
q.push(s); dis[s]=0; d[s]=0;
while(!q.empty()){
int p=q.front(); q.pop(); vis[p]=0; inc[p]++;
for(int i=0;i<g[p].size();i++){
if(d[g[p][i].p]>d[p]+g[p][i].v&&g[p][i].c>0){
dis[g[p][i].p]=p; edg[g[p][i].p]=i;
d[g[p][i].p]=d[p]+g[p][i].v;
if(vis[g[p][i].p]==0) vis[g[p][i].p]=1, q.push(g[p][i].p);}}}
return dis[t]>0;}
int dinic_dfs(){
int p=t,a=0x7fffffff;
while(p-s) a=min(a,g[dis[p]][edg[p]].c),p=dis[p];
int lc=costs;
p=t;
while(p-s){
int tc,i=edg[p];
G[dis[p]][i].c-=a,
G[p][oppo[dis[p]][i]].c+=a,
costs+=a*G[dis[p]][i].v;
p=dis[p];}
return a;}
int dinic_main(int src,int dest){
s=src; t=dest;
while(dinic_spfa()) ans+=dinic_dfs();
return ans;}
void build(int w,int x,int y,int z){
oppo[x].push_back(g[w].size());
g[w].push_back(item(x,z,y));
oppo[w].push_back(g[x].size());
g[x].push_back(item(w,-z,0));}
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++) scanf("%d%d%d%d",&inp[i][0],&inp[i][1],&inp[i][2],&inp[i][3]),
build(inp[i][0],inp[i][1],inp[i][2],0);
dinic_main(1,n);
printf("%d ",ans);
for(int i=1;i<=m;i++)
build(inp[i][0],inp[i][1],0x7fffffff,inp[i][3]);
build(0,1,k,0);
dinic_main(0,n);
printf("%d
",costs);
}