zoukankan      html  css  js  c++  java
  • [CF1163C1] Power Transmission (Easy Edition)

    Description

    在一个平面直角坐标系中,给你 $ n(2≤n≤50) $ 个点的坐标。这 $ n $ 个点中,每两个点之间都有一条直线(注意不是线段) 相连。求:这些直线中,有多少对直线相交。

    1.当多点共线时,不认为由这几个点产生的直线有交点;
    2.多条直线交于一点时,并不代表这几条直线在这个点相交时只产生一个交点,而是每两条直线都要统计一次。

    Solution

    熟悉一下板子(这题为什么有1900?)

    #include <bits/stdc++.h>
    using namespace std;
    #define mp make_pair
    #define fi first
    #define se second
    #define pb push_back
    typedef double db;
    const db eps = 1e-6;
    const db pi = acos(-1);
    int sign(db k) {
    	if (k > eps) return 1; else if (k < -eps) return -1; return 0;
    }
    int cmp(db p1, db p2) { return sign(p1 - p2); }
    int inmid(db p1, db p2, db p3) { return sign(p1 - p3) * sign(p2 - p3) <= 0; }
    struct point {
    	db x, y;
    	point operator + (const point& p1) const { return (point) { p1.x + x, p1.y + y }; }
    	point operator - (const point& p1) const { return (point) { x - p1.x, y - p1.y }; }
    	point operator * (db p1) const { return (point) { x* p1, y* p1 }; }
    	point operator / (db p1) const { return (point) { x / p1, y / p1 }; }
    	int operator == (const point& p1) const { return cmp(x, p1.x) == 0 && cmp(y, p1.y) == 0; }
    	// 逆时针旋转
    	point turn(db p1) { return (point) { x* cos(p1) - y * sin(p1), x* sin(p1) + y * cos(p1) }; }
    	point turn90() { return (point) { -y, x }; }
    	bool operator < (const point p1) const {
    		int a = cmp(x, p1.x);
    		if (a == -1) return 1; else if (a == 1) return 0; else return cmp(y, p1.y) == -1;
    	}
    	db abs() { return sqrt(x * x + y * y); }
    	db abs2() { return x * x + y * y; }
    	db dis(point p1) { return ((*this) - p1).abs(); }
    	point unit() { db w = abs(); return (point) { x / w, y / w }; }
    	void scan() { double p1, p2; scanf("%lf%lf", &p1, &p2); x = p1; y = p2; }
    	void print() { printf("%.11lf %.11lf ", x, y); }
    	db getw() { return atan2(y, x); }
    	point getdel() { if (sign(x) == -1 || (sign(x) == 0 && sign(y) == -1)) return (*this) * (-1); else return (*this); }
    	int getP() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) == -1); }
    };
    int inmid(point p1, point p2, point p3) { return inmid(p1.x, p2.x, p3.x) && inmid(p1.y, p2.y, p3.y); }
    db cross(point p1, point p2) { return p1.x * p2.y - p1.y * p2.x; }
    db dot(point p1, point p2) { return p1.x * p2.x + p1.y * p2.y; }
    db rad(point p1, point p2) { return atan2(cross(p1, p2), dot(p1, p2)); }
    // -pi -> pi
    int compareangle(point p1, point p2) {
    	return p1.getP() < p2.getP() || (p1.getP() == p2.getP() && sign(cross(p1, p2)) > 0);
    }
    point proj(point p1, point p2, point q) { // q 到直线 p1,p2 的投影
    	point k = p2 - p1; return p1 + k * (dot(q - p1, k) / k.abs2());
    }
    point reflect(point p1, point p2, point q) { return proj(p1, p2, q) * 2 - q; }
    int clockwise(point p1, point p2, point p3) {// p1 p2 p3 逆时针 1 顺时针 -1 否则 0
    	return sign(cross(p2 - p1, p3 - p1));
    }
    int checkLL(point p1, point p2, point p3, point p4) {// 求直线 (L) 线段 (S)p1,p2 和 p3,p4 的交点
    	return cmp(cross(p3 - p1, p4 - p1), cross(p3 - p2, p4 - p2)) != 0;
    }
    point getLL(point p1, point p2, point p3, point p4) {
    	db w1 = cross(p1 - p3, p4 - p3), w2 = cross(p4 - p3, p2 - p3); return (p1 * w2 + p2 * w1) / (w1 + w2);
    }
    int intersect(db l1, db r1, db l2, db r2) {
    	if (l1 > r1) swap(l1, r1); if (l2 > r2) swap(l2, r2); return cmp(r1, l2) != -1 && cmp(r2, l1) != -1;
    }
    int checkSS(point p1, point p2, point p3, point p4) {
    	return intersect(p1.x, p2.x, p3.x, p4.x) && intersect(p1.y, p2.y, p3.y, p4.y) &&
    		sign(cross(p3 - p1, p4 - p1)) * sign(cross(p3 - p2, p4 - p2)) <= 0 &&
    		sign(cross(p1 - p3, p2 - p3)) * sign(cross(p1 - p4, p2 - p4)) <= 0;
    }
    db disSP(point p1, point p2, point q) {
    	point p3 = proj(p1, p2, q);
    	if (inmid(p1, p2, p3)) return q.dis(p3); else return min(q.dis(p1), q.dis(p2));
    }
    db disSS(point p1, point p2, point p3, point p4) {
    	if (checkSS(p1, p2, p3, p4)) return 0;
    	else return min(min(disSP(p1, p2, p3), disSP(p1, p2, p4)), min(disSP(p3, p4, p1), disSP(p3, p4, p2)));
    }
    int onS(point p1, point p2, point q) { return inmid(p1, p2, q) && sign(cross(p1 - q, p2 - p1)) == 0; }
    struct line {
    	// p[0]->p[1]
    	point p[2];
    	line(){}
    	line(point p1, point p2) { p[0] = p1; p[1] = p2; }
    	point& operator [] (int k) { return p[k]; }
    	int include(point k) { return sign(cross(p[1] - p[0], k - p[0])) > 0; }
    	int ons(point k) {
            point a=k-p[0],b=p[1]-p[0];
            return cmp(a.x*b.y,b.x*a.y)==0;
    	}
    	point dir() { return p[1] - p[0]; }
    	line push() { // 向外 ( 左手边 ) 平移 eps
    		const db eps = 1e-6;
    		point delta = (p[1] - p[0]).turn90().unit() * eps;
    		return { p[0] - delta,p[1] - delta };
    	}
    };
    int checkLL(line p1, line p2) { return checkLL(p1[0], p1[1], p2[0], p2[1]); }
    point getLL(line p1, line p2) { return getLL(p1[0], p1[1], p2[0], p2[1]); }
    int parallel(line p1, line p2) { return sign(cross(p1.dir(), p2.dir())) == 0; }
    int sameDir(line p1, line p2) { return parallel(p1, p2) && sign(dot(p1.dir(), p2.dir())) == 1; }
    int operator < (line p1, line p2) {
    	if (sameDir(p1, p2)) return p2.include(p1[0]);
    	return compareangle(p1.dir(), p2.dir());
    }
    int checkpos(line p1, line p2, line p3) { return p3.include(getLL(p1, p2)); }
    
    int n,cnt;
    long long ans;
    point p[105];
    line l[10005];
    
    signed main() {
        scanf("%d",&n);
        for(int i=1;i<=n;i++) p[i].scan();
        for(int i=1;i<=n;i++) {
            for(int j=1;j<i;j++) {
                line tmp(p[i],p[j]);
                int flag=1;
                for(int k=1;k<=cnt;k++) {
                    if(parallel(l[k],tmp)) {
                        if(tmp.ons(l[k].p[0]) || tmp.ons(l[k].p[1]) ||
                           l[k].ons(tmp.p[0]) || l[k].ons(tmp.p[1])) {
                            flag=0;
                           }
                    }
                }
                if(flag) l[++cnt]=tmp;
            }
        }
        for(int i=1;i<=cnt;i++) {
            for(int j=1;j<i;j++) {
                if(checkLL(l[i],l[j])) ++ans;
            }
        }
        cout<<ans;
    }
    
  • 相关阅读:
    VS自带的诊断工具
    Electron学习
    PC跨*台
    .NET调试学习
    Mac使用
    SSL/TLS
    UKey学习
    授权机制OAuth、JWT
    代理服务器
    .NET相关源码查找
  • 原文地址:https://www.cnblogs.com/mollnn/p/12863998.html
Copyright © 2011-2022 走看看