Description
给定 (n),求 (sum_{i = 1}^n sum_{j = i + 1}^n gcd(i, j))
Solution
经过一波推导得到
[sum_{i = 1}^n sum_{j = i + 1}^n gcd(i, j)=sum_{k=1}^n k sum_{k|d} mu(frac d k) [frac N d]^2
]
暴力计算即可
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 2000005;
const int MAXN = 2000005;
bool isNotPrime[MAXN + 1];
int mu[MAXN + 1], phi[MAXN + 1], primes[MAXN + 1], cnt;
inline void euler() {
isNotPrime[0] = isNotPrime[1] = true;
mu[1] = 1;
phi[1] = 1;
for (int i = 2; i <= MAXN; i++) {
if (!isNotPrime[i]) {
primes[++cnt] = i;
mu[i] = -1;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt; j++) {
int t = i * primes[j];
if (t > MAXN) break;
isNotPrime[t] = true;
if (i % primes[j] == 0) {
mu[t] = 0;
phi[t] = phi[i] * primes[j];
break;
} else {
mu[t] = -mu[i];
phi[t] = phi[i] * (primes[j] - 1);
}
}
}
}
int n,c[N];
signed main() {
euler();
ios::sync_with_stdio(false);
cin>>n;
int ans=0;
for(int k=1;k<=n;k++) {
int tmp=0;
for(int d=k;d<=n;d+=k) {
tmp+=mu[d/k]*(n/d)*(n/d);
}
ans+=tmp*k;
}
for(int i=1;i<=n;i++) ans-=i;
cout<<ans/2;
}