[CF689D] Friends and Subsequences - 二分,ST表
Description
给定两个长度均为 n 的数列,问有多少组 (l,r) 使得 max(al,...,ar)=min(bl,...,br)
Solution
固定左端点后,一个下降,一个上升,那么有效的区间一定是单调的
ST 表 + 二分即可
对于每个左端点需要二分两次,第一次找出第一个合法的右端点,第二次找出最后一个合法的右端点
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 200005;
int __log2[N];
int _log2(int x) { return __log2[x]; }
int _pre_log2()
{
for (int i = 1; i < N; i++)
__log2[i] = log2(i);
}
struct st
{
int a[N][21];
void build(int *src, int n)
{
for (int i = 1; i <= n; i++)
a[i][0] = src[i];
for (int i = 1; i <= 20; i++)
for (int j = 1; j <= n - (1 << i) + 1; j++)
a[j][i] = max(a[j][i - 1], a[j + (1 << (i - 1))][i - 1]);
}
int query(int l, int r)
{
int j = _log2(r - l + 1); // MAY BE ACCED
return max(a[l][j], a[r - (1 << j) + 1][j]);
}
} sta;
struct st_
{
int a[N][21];
void build(int *src, int n)
{
for (int i = 1; i <= n; i++)
a[i][0] = src[i];
for (int i = 1; i <= 20; i++)
for (int j = 1; j <= n - (1 << i) + 1; j++)
a[j][i] = min(a[j][i - 1], a[j + (1 << (i - 1))][i - 1]);
}
int query(int l, int r)
{
int j = _log2(r - l + 1); // MAY BE ACCED
return min(a[l][j], a[r - (1 << j) + 1][j]);
}
} stb;
int n, a[N], b[N];
signed main()
{
ios::sync_with_stdio(false);
_pre_log2();
cin >> n;
for (int i = 1; i <= n; i++)
cin >> a[i];
for (int i = 1; i <= n; i++)
cin >> b[i];
sta.build(a, n);
stb.build(b, n);
int ans = 0;
for (int i = 1; i <= n; i++)
{
int l = i, r = n, ans1 = 0;
while (l <= r)
{
int mid = (l + r) / 2;
if (sta.query(i, mid) == stb.query(i, mid))
ans1 = mid;
if (sta.query(i, mid) < stb.query(i, mid))
l = mid + 1;
else
r = mid - 1;
}
int ans2 = 0;
l = i, r = n;
while (l <= r)
{
int mid = (l + r) / 2;
if (sta.query(i, mid) == stb.query(i, mid))
ans2 = mid;
if (sta.query(i, mid) <= stb.query(i, mid))
l = mid + 1;
else
r = mid - 1;
}
// cout << "i=" << i << " " << ans1 << " " << ans2 << endl;
// [ans1, ans2]
if (ans1 && ans2)
{
ans += ans2 - ans1 + 1;
}
}
cout << ans << endl;
}