zoukankan      html  css  js  c++  java
  • [CF1511F] Chainword

    [CF1511F] Chainword - Trie,状态压缩,dp

    Description

    题意留坑

    Solution

    (f[i][p][q]) 表示长度为 (i) 的串,一边转移到 Trie 上的节点 (q),一边转移到 (q),然后考虑矩阵快速幂优化

    但是直观上矩阵边长最大到 (800),但是又感觉好像并没有这么多状态,然后题解告诉我们最多只有 (161) 个状态

    #include <bits/stdc++.h>
    using namespace std;
    
    #define int long long
    
    const int N = 163;
    const int mod = 998244353;
    const int S = 26;
    
    // todo: matrix qpow
    
    namespace matrix
    {
        struct Matrix
        {
            vector<vector<int>> a;
            int n, m;
    
            Matrix(int n = 0, int m = 0) : n(n), m(m)
            {
                a.resize(N);
                for (auto &i : a)
                    i.resize(N);
            }
    
            vector<int> &operator[](int id)
            {
                return a[id];
            }
        };
    
        Matrix I(int n)
        {
            Matrix ret(n, n);
            for (int i = 1; i <= n; i++)
                ret.a[i][i] = 1;
            return ret;
        }
    
        Matrix operator*(Matrix a, Matrix b)
        {
            Matrix ret;
            ret.n = a.n;
            ret.m = b.m;
            for (int i = 1; i <= ret.n; i++)
            {
                for (int j = 1; j <= ret.m; j++)
                {
                    for (int k = 1; k <= a.m; k++)
                    {
                        ret.a[i][j] += a.a[i][k] * b.a[k][j];
                        ret.a[i][j] %= mod;
                    }
                }
            }
            return ret;
        }
    
        Matrix qpow(Matrix p, int q)
        {
            int n = p.n;
            return ((q & 1) ? p : I(n)) * (q ? qpow(p * p, q / 2) : I(n));
        }
    }
    
    using namespace matrix;
    
    // todo: trie
    
    namespace trie
    {
        struct Node
        {
            int ch[S] = {};
            int tag = 0;
        };
    
        vector<Node> nodes;
    
        void TrieInsert(const string &s)
        {
            int p = 1;
            for (char C : s)
            {
                int c = C - 'a';
                if (nodes[p].ch[c] == 0)
                {
                    nodes[p].ch[c] = nodes.size();
                    nodes.emplace_back(Node());
                }
                p = nodes[p].ch[c];
            }
            nodes[p].tag = 1;
        }
    
    }
    
    using namespace trie;
    
    // todo: index manager
    
    map<pair<int, int>, int> mp;
    
    queue<pair<int, int>> que;
    
    int getid(int p, int q)
    {
        if (p > q)
            swap(p, q);
        pair<int, int> s = {p, q};
        if (mp.count(s) == 0)
        {
            int id = mp.size();
            mp[s] = ++id;
            que.push(s);
        }
        return mp[s];
    }
    
    // todo: main
    
    signed main()
    {
        int n, m;
        cin >> n >> m;
        nodes.emplace_back(Node());
        nodes.emplace_back(Node());
        while (n--)
        {
            string s;
            cin >> s;
            TrieInsert(s);
        }
        que.push({1, 1});
        mp[{1, 1}] = 1;
        Matrix trans(N - 2, N - 2);
        while (que.size())
        {
            auto [p, q] = que.front();
            que.pop();
            int state = getid(p, q);
            for (int c = 0; c < S; c++)
            {
                int np = nodes[p].ch[c];
                int nq = nodes[q].ch[c];
                if (np && nq)
                {
                    ++trans[state][getid(np, nq)];
                    if (nodes[np].tag)
                        ++trans[state][getid(1, nq)];
                    if (nodes[nq].tag)
                        ++trans[state][getid(np, 1)];
                    if (nodes[np].tag && nodes[nq].tag)
                        ++trans[state][getid(1, 1)];
                }
            }
        }
    
        cout << qpow(trans, m)[1][1] << endl;
    }
    
  • 相关阅读:
    如何面试程序员?
    类似猪八戒网的网站
    存储过程
    一个不错的网站(博客制作参考)
    用触发器来实现级联更新级联删除
    用触发器进行级联删除
    数据库触发器详解
    浅谈数据库中的存储过程
    JDBC连接数据库
    Java递归函数
  • 原文地址:https://www.cnblogs.com/mollnn/p/14661000.html
Copyright © 2011-2022 走看看