Problem L.Videos
Problem Description
C-bacteria takes charge of two kinds of videos: ’The Collection of Silly Games’ and ’The Collection of Horrible Games’.
For simplicity’s sake, they will be called as videoA and videoB.
There are some people who want to watch videos during today, and they will be happy after watching videos of C-bacteria.
There are n hours a day, m videos are going to be show, and the number of people is K.
Every video has a type(videoA or videoB), a running time, and the degree of happi- ness after someone watching whole of it.
People can watch videos continuous(If one video is running on 2pm to 3pm and another is 3pm to 5pm, people can watch both of them).
But each video only allows one person for watching.
For a single person, it’s better to watch two kinds to videos alternately, or he will lose W happiness.
For example, if the order of video is ’videoA, videoB, videoA, videoB, …’ or ’B, A, B, A, B, …’, he won’t lose happiness; But if the order of video is ’A, B, B, B, A, B, A, A’, he will lose 3W happiness.
Now you have to help people to maximization the sum of the degree of happiness.
For simplicity’s sake, they will be called as videoA and videoB.
There are some people who want to watch videos during today, and they will be happy after watching videos of C-bacteria.
There are n hours a day, m videos are going to be show, and the number of people is K.
Every video has a type(videoA or videoB), a running time, and the degree of happi- ness after someone watching whole of it.
People can watch videos continuous(If one video is running on 2pm to 3pm and another is 3pm to 5pm, people can watch both of them).
But each video only allows one person for watching.
For a single person, it’s better to watch two kinds to videos alternately, or he will lose W happiness.
For example, if the order of video is ’videoA, videoB, videoA, videoB, …’ or ’B, A, B, A, B, …’, he won’t lose happiness; But if the order of video is ’A, B, B, B, A, B, A, A’, he will lose 3W happiness.
Now you have to help people to maximization the sum of the degree of happiness.
Input
Multiple query.
On the first line, there is a positive integer T, which describe the number of data. Next there are T groups of data.
for each group, the first line have four positive integers n, m, K, W : n hours a day, m videos, K people, lose W happiness when watching same videos).
and then, the next m line will describe m videos, four positive integers each line S, T, w, op : video is the begin at S and end at T, the happiness that people can get is w, and op describe it’s tpye(op=0 for videoA and op=1 for videoB).
There is a blank line before each groups of data.
T<=20, n<=200, m<=200, K<=200, W<=20, 1<=S<T<=n, W<=w<=1000,
op=0 or op=1
On the first line, there is a positive integer T, which describe the number of data. Next there are T groups of data.
for each group, the first line have four positive integers n, m, K, W : n hours a day, m videos, K people, lose W happiness when watching same videos).
and then, the next m line will describe m videos, four positive integers each line S, T, w, op : video is the begin at S and end at T, the happiness that people can get is w, and op describe it’s tpye(op=0 for videoA and op=1 for videoB).
There is a blank line before each groups of data.
T<=20, n<=200, m<=200, K<=200, W<=20, 1<=S<T<=n, W<=w<=1000,
op=0 or op=1
Output
Your output should include T lines, for each line, output the maximum happiness for the corresponding datum.
Sample Input
2
10 3 1 10
1 5 1000 0
5 10 1000 1
3 9 10 0
10 3 1 10
1 5 1000 0
5 10 1000 0
3 9 10 0
Sample Output
2000 1990
Solution
最大费用最大流板题呀简直(事后XXX),
嗯就这样拆点建图,注意中间v1’到v2的那条边需要考虑减w的情况,就是题目提到的相同类型减去w,不同类型不用减
次汇点到超级汇点控制访问总人数
1 /* 2 最大费用最大流 3 拆点建图 4 */ 5 #include <bits/stdc++.h> 6 #define lson rt << 1, l, mid 7 #define rson rt << 1 | 1, mid + 1, r 8 using namespace std; 9 using ll = long long; 10 using ull = unsigned long long; 11 using pa = pair<int, int>; 12 using ld = long double; 13 const int maxV = 1e4 + 10; 14 const int maxE = 5e4 + 10; 15 const int inf = 0x3f3f3f3f; 16 template <class T> 17 inline T read(T &ret) 18 { 19 int f = 1; 20 ret = 0; 21 char ch = getchar(); 22 while (!isdigit(ch)) 23 { 24 if (ch == '-') 25 f = -1; 26 ch = getchar(); 27 } 28 while (isdigit(ch)) 29 { 30 ret = (ret << 1) + (ret << 3) + ch - '0'; 31 ch = getchar(); 32 } 33 ret *= f; 34 return ret; 35 } 36 template <class T> 37 inline void write(T n) 38 { 39 if (n < 0) 40 { 41 putchar('-'); 42 n = -n; 43 } 44 if (n >= 10) 45 { 46 write(n / 10); 47 } 48 putchar(n % 10 + '0'); 49 } 50 struct node 51 { 52 int s, t, c, op, idx; 53 bool operator<(const node &x) const 54 { 55 return t < x.t; 56 } 57 } v[maxV]; 58 59 int n, m, s, t; //点 边 源点 汇点 60 int cnt, maxflow, mincost; 61 struct edge 62 { 63 int v, nxt, w, c; //终点,下一边序号,残余容量,单位流量费用 64 } edg[maxE * 2]; 65 int head[maxV], cur[maxV]; //第一条边序号,下一次访问的边序号(用于当前弧优化) 66 int dis[maxV]; //分层图,类似最大流的dep数组 67 int inq[maxV]; //spfa记录 68 void init() 69 { 70 cnt = 0; 71 memset(head, -1, sizeof head); 72 memset(inq, 0, sizeof inq); 73 maxflow = mincost = 0; 74 } 75 void add(int u, int v, int w, int c) 76 { 77 edg[cnt].v = v; 78 edg[cnt].w = w; 79 edg[cnt].c = c; 80 edg[cnt].nxt = head[u]; 81 head[u] = cnt++; 82 } 83 bool spfa() 84 { 85 queue<int> que; 86 while (!que.empty()) 87 que.pop(); 88 que.push(s); 89 memset(dis, 0x3f, sizeof dis); //注意初始化,防止tle 90 dis[s] = 0; 91 while (!que.empty()) 92 { 93 int u = que.front(); 94 que.pop(); 95 inq[u] = 0; 96 for (int i = head[u]; ~i; i = edg[i].nxt) 97 { 98 int v = edg[i].v; 99 if (edg[i].w && dis[u] + edg[i].c < dis[v]) //还有残余容量且费用可以更新 100 { 101 dis[v] = dis[u] + edg[i].c; 102 if (!inq[v]) 103 { 104 que.push(v); 105 inq[v] = 1; 106 } 107 } 108 } 109 } 110 return dis[t] != inf; 111 } 112 int dfs(int u, int flow) 113 { 114 if (u == t) //到达汇点 115 { 116 maxflow += flow; 117 return flow; 118 } 119 int res = 0; 120 inq[u] = 1; 121 for (int i = cur[u]; ~i; i = edg[i].nxt) 122 { 123 int v = edg[i].v; 124 if (!inq[v] && edg[i].w && dis[v] == dis[u] + edg[i].c) //没在队列,还有残余容量,满足费用分层图 125 { 126 cur[u] = i; //当前弧优化 127 int fl = dfs(v, min(flow - res, edg[i].w)); 128 res += fl; 129 edg[i ^ 1].w += fl; 130 edg[i].w -= fl; 131 mincost += fl * edg[i].c; 132 if (res == flow) 133 break; 134 } 135 } 136 inq[u] = 0; 137 return res; 138 } 139 void dinic() 140 { 141 while (spfa()) 142 { 143 memcpy(cur, head, sizeof head); 144 dfs(s, inf); 145 } 146 } 147 inline int left(int x) 148 { 149 return x; 150 } 151 inline int right(int x) 152 { 153 return x + m; 154 } 155 void debug() 156 { 157 for (int i = 1; i <= 2 * m + 3; i++) 158 { 159 cout << i << ": "; 160 for (int j = head[i]; ~j; j = edg[j].nxt) 161 { 162 cout << edg[j].v << " " << edg[j].w << " " << edg[j].c << "; "; 163 } 164 cout << " "; 165 } 166 } 167 int main(int argc, char const *argv[]) 168 { 169 #ifndef ONLINE_JUDGE 170 freopen("in.txt", "r", stdin); 171 freopen("out.txt", "w", stdout); 172 #endif 173 int z; 174 read(z); 175 while (z--) 176 { 177 init(); 178 int k, w; 179 read(n), read(m), read(k), read(w); 180 s = 2 * m + 1; 181 int pt = 2 * m + 2; 182 t = 2 * m + 3; 183 for (int i = 1; i <= m; i++) 184 { 185 read(v[i].s), read(v[i].t), read(v[i].c), read(v[i].op); 186 v[i].idx = i; 187 add(s, left(i), inf, 0); 188 add(left(i), s, 0, 0); 189 add(left(i), right(i), 1, 0); 190 add(right(i), left(i), 0, 0); 191 add(right(i), pt, 1, -v[i].c); 192 add(pt, right(i), 0, v[i].c); 193 } 194 sort(v + 1, v + m + 1); 195 for (int i = 1; i < m; i++) 196 for (int j = i + 1; j <= m; j++) 197 { 198 if (v[j].s >= v[i].t) 199 { 200 int f = v[i].op == v[j].op; 201 int p = v[i].idx, q = v[j].idx; 202 add(right(p), left(q), 1, f * w - v[i].c); 203 add(left(q), right(p), 0, -f * w + v[i].c); 204 } 205 } 206 add(pt, t, k, 0); 207 add(t, pt, 0, 0); 208 dinic(); 209 write(-mincost); 210 puts(""); 211 } 212 return 0; 213 }