zoukankan      html  css  js  c++  java
  • Paper阅读小结

    阅读了近一个月的paper了,得回头好好看看了:

    Detection of Human Actions from a Single Example

    其中paper“Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels”为其期刊版

    关键点:

    1,提出一种衡量局部时空特性的度量;

    2,通过PCA对所得度量进行主成份提取;

    3,通过MCS求query与target的相似性:RV;

    4,对RV所得的值通过经验数据进行分析(与两个阈值对比)。

    Multiclass Object Recognition with Sparse, Localized Features

    其中paper“Object class recognition and localization using sparse features with limited receptive fields”

    关键点:

    1,主导思想为HMAX即层次最大化模型;

    2,在HMAX模型中的改进:sparsification、lateral inhibition;

    3,将SVM对权重比高的特征进行训练。

    An Experimental Comparison of Min-Cut/Max-Flow Algorithm for Energy Minimization in Vision

    关键点:

    在源点与汇点均使用广度优先搜索

    The chains model for detecting parts by their context

    关键点:

    1,通过SIFT提取特征;

    2,对特征进行选择(兴趣点相邻需保持一定尺度);

    3,定义chain模型,并运用贝叶斯概率理论进行概率计算;

    4,  Full Object Detection 则将其退化成类似于STAR的模型。

    Action Recognition using Context and Appearance Distribution Features

    关键点:

    1,检测兴趣点,并得到Multi-scale 时空上下文特征(即时空分布特征)和局部视频(此处的局部视频,即为兴趣点分布的XYT立体)分布(对其进行PCA降维);

    2,运用AFMKL将时空上下文特征与局部特征分布进行融合;

    3,计算其得分,并选出最优解。

    Joint Segmentation and Classification of Human Actions in Video

    关键点:

    1,与一般的先segment图片再进行Action detection不同,本文将segment与classify结合在一起,从而达到更快速的效果;

    2,有监督的训练:运用SVM训练样本(视频),提取出含有时空特征的库(特征选取很巧妙);

    3,  动态规划进行segment视频,通过得到的score进行取最优解。

    Real-Time Human Pose Recognition in Parts from Single Depth Images

    关键点:

    1,采用深度图像,可以更好的模拟人眼;

    2,一个特色:通过现实数据,然后运用机器合成图像(500k),并选出100k作为所需图像(保证两两图像之间的距离至少大于5cm);

    3,训练,通过body part标记(深度图像里的特征)、骨骼点位置推算;

    4,通过随机化决策森林得到Joint position。

    Optimal Spatio-Temporal Path Discovery for Video Event Detection

    关键点:

    1,对路径连通条件进行限制;

    2,  对所有路径的discriminative score进行计算,运用“最优路径算法”。

    Robust Real-Time Face Detection

    关键点:

    1,运用了一种新奇的图像表示方法,“integral image”;

    2,分类器使用adaboost分类器;

    3,多种分类器的综合应用“cascade”模型;

    4,主要特点是,先用一种可以得到含有99%人脸的算法,使数据量将为原来的50%,然后在对含有人脸的部分运用“cascade”式的分类器运用。

    Action Recognition with Multiscale Spatio-Temporal Contexts

    关键点:

    1,运用bag of words方法;

    2,提取特征->局部特征分析(读取XYT三个方向上的上下文特征)->综合分析特征(integration)->MKL(在文中有详细流程图)。

    Baby Talk: Understanding and Generating Simple Image Descriptions

    关键点:

    将一幅图片运用一句话表示,其中包括:名词、动词、形容词。

    Learning Context for Collective Activity Recognition

    关键点:

    当检测到的目标为同样的动作时,可通过crowd中其他人的位置与动作判断目标的动作。

    A Unified Framework for Locating and Recognizing Human Actions

    关键点:

    对deformable part进行训练,并将其与input video进行score,然后通过score对兴趣点进行分析及SVM分类。

    Human Action Recognition by Learning Bases of Action Attributes and Parts

    关键点:

    通过名词+动词方法,通过识别基本parts来判断动词,从而得到图片内容及action

    以后将会接着读下去,paper看多了起码能开阔视野,最关键的尤其要好好掌握程序的编写。

  • 相关阅读:
    Ibatis入门基本语法(转) good
    zip文件压缩(转)
    联合创始人股权分配,五五分是最糟糕的做法(转)
    家长如何检查孩子的家庭作业
    oracle存储过程实例
    MachineKey
    写写我那天參加过的《文明之光》书友会
    各种加解密算法比較
    算法分析---查找最大回文子串
    随机数是骗人的,.Net、Java、C为我作证
  • 原文地址:https://www.cnblogs.com/moondark/p/2271387.html
Copyright © 2011-2022 走看看