zoukankan      html  css  js  c++  java
  • 1004. Counting Leaves (30)PAT甲级真题(bfs,dfs,树的遍历,层序遍历)

    A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

    Input

    Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (< N), the number of non-leaf nodes. Then M lines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]
    

    where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

    Output

    For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

    The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output "0 1" in a line.

    Sample Input

    2 1
    01 1 02

    Sample Output

    0 1

    生词

    英文 解释
    family hierarchy 家庭等级
    pedigree tree 族谱
    The input ends with N being 0. 输入以N为0结束。
    seniority 年长
    every seniority level 每一层次

    题目大意:

    给出一棵树,问每一层各有多少个叶子结点~

    分析:

    可以用dfs也可以用bfs~如果用dfs,用二维数组保存每一个有孩子结点的结点以及他们的孩子结点,从根结点开始遍历,直到遇到叶子结点,就将当前层数depth的book[depth]++;标记第depth层拥有的叶子结点数,最后输出~
    image

    原文链接:https://blog.csdn.net/liuchuo/article/details/52214833

    DFS题解

    image

    #include <bits/stdc++.h>
    
    using namespace std;
    const int N=110;
    
    vector<int> G[N]; //存放树
    int leaf[N]={0};  //存放每层的叶子结点个数
    int max_h=1;      //树的深度
    
    void DFS(int index,int h) //index为当前遍历到的结点编号,h为当前深度
    {
        max_h=max(h,max_h);
        if(G[index].size()==0){ //如果该结点是叶子结点
            leaf[h]++;
            return;
        }
        for(int i=0;i<G[index].size();i++){ //枚举所有子结点
            DFS(G[index][i],h+1);
        }
    }
    int main()
    {
    #ifdef ONLINE_JUDGE
    #else
        freopen("1.txt", "r", stdin);
    #endif
        int n,m,parent,child,k;
        scanf("%d%d",&n,&m);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&parent,&k);  //父结点编号及子结点个数
            for(int j=0;j<k;j++){
                scanf("%d",&child);
                G[parent].push_back(child);  //加边
            }
        }
        DFS(1,1); //初始入口为跟结点与第一层
        printf("%d",leaf[1]);
        for(int i=2;i<=max_h;i++){
            printf(" %d",leaf[i]);
        }
        return 0;
    }
    

    BFS题解

    image

    #include <bits/stdc++.h>
    
    using namespace std;
    const int N=110;
    
    vector<int> G[N]; //存放树
    int h[N];     //各结点所处的层号,从1开始
    int leaf[N];  //存放每层的叶子结点个数
    int max_h;      //树的最大深度
    
    void BFS()
    {
        queue<int> Q;
        Q.push(1);  //将根结点压入队列
        while(!Q.empty()){
            int id=Q.front(); //弹出队首结点
            Q.pop();
            max_h=max(max_h,h[id]); //更新最大深度
            if(G[id].size()==0){ //如果该结点是叶子结点
                leaf[h[id]]++;
            }
            for(int i=0;i<G[id].size();i++){ //枚举所有子结点
                h[G[id][i]]=h[id]+1;  //子结点编号为G[id][i]
                Q.push(G[id][i]);  //将子结点压入队列
            }
        }
    }
    int main()
    {
    #ifdef ONLINE_JUDGE
    #else
        freopen("1.txt", "r", stdin);
    #endif
        int n,m,parent,child,k;
        scanf("%d%d",&n,&m);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&parent,&k);  //父结点编号及子结点个数
            for(int j=0;j<k;j++){
                scanf("%d",&child);
                G[parent].push_back(child);  //加边
            }
        }
        h[1]=1;  //初始化根节点
        BFS();   //BFS入口
        printf("%d",leaf[1]);
        for(int i=2;i<=max_h;i++){
            printf(" %d",leaf[i]);
        }
        return 0;
    }
    
  • 相关阅读:
    将Emacs Org mode用于GTD任务管理
    以Emacs Org mode为核心的任务管理方案
    Epson L4158打印机安装与配置
    使用wget命令下载网络资源
    Apt下载安装包时Hash校验和不符
    Deep Learning专栏--FFM+Recurrent Entity Network的端到端方案
    Deep Learning专栏--强化学习之从 Policy Gradient 到 A3C(3)
    Deep Learning专栏--强化学习之MDP、Bellman方程(1)
    Deep Learning基础--Softmax求导过程
    Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导
  • 原文地址:https://www.cnblogs.com/moonlight1999/p/15515346.html
Copyright © 2011-2022 走看看