zoukankan      html  css  js  c++  java
  • Contemplation! Algebra

          Contemplation! Algebra

    Given the value of a+b and ab you will have to find the value of a
    n + b
    n
    Input
    The input file contains several lines of inputs. Each line except the last line contains 3 non-negative
    integers p, q and n. Here p denotes the value of a+b and q denotes the value of ab. Input is terminated
    by a line containing only two zeroes. This line should not be processed. Each number in the input file
    fits in a signed 32-bit integer. There will be no such input so that you have to find the value of 00
    .
    Output
    For each line of input except the last one produce one line of output. This line contains the value of
    a
    n + b
    n. You can always assume that a
    n + b
    n fits in a signed 64-bit integer.
    Sample Input
    10 16 2
    7 12 3
    0 0
    Sample Output
    68
    91

    附:debug:

    input:

    0 0 0
    0 0 1
    0 0 200000000
    1 3 0
    999999 999999 0
    1 0 200000000
    2 0 61
    2 1 0
    2 1 100
    2 1 200000000
    0 0 0
    0 1 1
    0 1 2
    0 1 3
    0 1 199999999
    0 1 200000000
    0 1 200000001
    0 1 200000002
    5 6 7
    10 20 10
    90 87 3
    999 231 2
    0 0

    output:

    2
    0
    0
    2
    2
    1
    2305843009213693952
    2
    2
    2
    2
    0
    -2
    0
    0
    2
    0
    -2
    2315
    393600000
    705510
    997539


    题意:输入p,q,n;p=a+b,q=a*b,输出a^n+b^n
    TIP:令f(n)=a^n+b^n;则f(n)*(a+b)=a^(n+1)+b^(n+1)+a*b^n+b*a^n
                        =f(n+1)+a*b*f(n-1)
      即:f(n+1)=-(a+b)*f(n)+a*b*f(n-1)
    好了,矩阵上场,对于形如f(n+1)=p*f(n)+q*f(n-1)的;都可以转换为(p,q)
                                      (1,0)…………%…………这是个2*2的矩阵

    然后{f(n),f(n-1)}……(此为1*2的矩阵)=(那个矩阵)^(n-2)*{f(2),f(1)};

    注意:如果输入0,0,2;你的程序运行不?

      scanf(……………………==3),我的如果不写的话就超时。

    代码:

     1 ///a^(n+1)+b^(n+1)=(a^n+b^n)p−(a^(n−1)+b^(n−1))
     2 #include<string.h>
     3 #include<stdio.h>
     4 
     5 long long p,q,n;
     6 
     7 struct mat
     8 {
     9     long long v[2][2];
    10     mat(){memset(v,0,sizeof(v));}
    11     mat operator * (mat c)
    12     {
    13         mat ans;
    14         for(int i=0;i<2;i++)///矩阵乘法再加上原有的原数
    15         {
    16             for(int j=0;j<2;j++)
    17             {
    18                 for(int k=0;k<2;k++)
    19                 {
    20                     ans.v[i][j]=ans.v[i][j]+v[i][k]*c.v[k][j];
    21                 }
    22                }
    23           }
    24           return ans;
    25      }
    26 };
    27 
    28 mat pow_mod(mat x,long long k)
    29 {
    30     mat ans;
    31     ans.v[0][0]=ans.v[1][1]=1;
    32 
    33     while(k)///二分求定以后的*
    34     {
    35         if(k&1)
    36             ans=ans*x;
    37         x=x*x;
    38         k>>=1;
    39      }
    40 
    41      return ans;
    42 }
    43 
    44 long long solve()
    45 {
    46     if(n==0)
    47         return 2;
    48     if(n==1)
    49         return p;
    50     if(n==2)
    51         return p*p-2*q;
    52 
    53     mat a;
    54     a.v[0][0]=p;
    55     a.v[0][1]=-q;
    56     a.v[1][0]=1;
    57     a=pow_mod(a,n-2);
    58 
    59     return a.v[0][1]*p+a.v[0][0]*(p*p-2*q);
    60 }
    61 
    62 int main()
    63 {
    64     while(scanf("%lld%lld%lld",&p,&q,&n)==3)
    65     {
    66         printf("%lld
    ",solve());
    67     }
    68     return 0;
    69 }
  • 相关阅读:
    php验证码
    php上传
    ajax的用法 资料
    ajax如何使用
    AJAX
    基础概念梳理 :
    ICompare 可比较接口
    强类型 和弱类型 c#
    .ne 基础(2)
    .net 基础(一)
  • 原文地址:https://www.cnblogs.com/moqitianliang/p/4739791.html
Copyright © 2011-2022 走看看