题目描述
地址 : https://leetcode.com/problems/edit-distance/description/
思路
- 使用
dp[i][j]
用来表示word1
的0~i-1
、word2
的0~j-1
的最小编辑距离 - 我们可以知道边界情况:
dp[i][0] = i
、dp[0][j] = j
,代表从""
变为dp[0~i-1]
或dp[0][0~j-1]
所需要的次数
同时对于两个字符串的子串,都能分为最后一个字符相等或者不等的情况:
- 如果
word1[i-1] == word2[j-1]
:dp[i][j] = dp[i-1][j-1]
- 如果
word1[i-1] != word2[j-1]
:- 向word1插入:
dp[i][j] = dp[i][j-1] + 1
- 从word1删除:
dp[i][j] = dp[i-1][j] + 1
- 替换word1元素:
dp[i][j] = dp[i-1][j-1] + 1
- 向word1插入:
public int minDistance(String word1, String word2) {
int n = word1.length();
int m = word2.length();
int[][] dp = new int[n + 1][m + 1];
for (int i = 0; i < m + 1; i++) {
dp[0][i] = i;
}
for (int i = 0; i < n + 1; i++) {
dp[i][0] = i;
}
for (int i = 1; i < n + 1; i++) {
for (int j = 1; j < m + 1; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}