zoukankan      html  css  js  c++  java
  • HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门

    题目描述:给出一个数列的第一项和第二项,计算第n项。

    递推式是 f(n)=f(n-1)+2*f(n-2)+n^4.

    由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题,n^4在这个式子中是非线性的,后一项和前一项没有什么直接关系,所以模拟赛的时候想破头也不会做。

    这里要做一个转换,把n^4变成一个线性的,也就是和(n-1)^4有关系的东西,而这个办法就是:

    n^4=(n-1+1)^4=(n-1)^4+4*(n-1)^3+6*(n-1)^2+4*(n-1)^1+(n-1)^0;

    这个转换就建立了某一项和前一项的关系,矩阵的F数组就是  f[7]={ b , a , 81 , 27 , 9 , 3 , 1 };,整体的矩阵也很好构造,代码里有。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #include<string.h>
    #include<sstream>
    #include<set>
    #include<map>
    #include<vector>
    #include<queue>
    #include<stack>
    #include<bitset>
    #define CLR(a,b) memset(a,b,sizeof(a))
    using namespace std;
    typedef long long ll;
    const int inf=0x3f3f3f3f;
    ll mod=2147493647;
    inline int rd(void) {
    	int x=0; int f=1;char s=getchar();
    	while(s<'0'||s>'9') {	if(s=='-')f=-1;	s=getchar();}
    	while(s>='0'&&s<='9') {	x=x*10+s-'0';s=getchar();}
    	x*=f;return x;
    }
    ll n,a,b;
    void mul(ll f[7],ll a[7][7]){
    	ll c[7];
    	CLR(c,0);
    	for(int j=0;j<7;j++){
    		for(int k=0;k<7;k++){
    			c[j]=(c[j]+f[k]*a[k][j]%mod)%mod;
    		}
    	}
    	memcpy(f,c,sizeof(c));
    }
    void mulself(ll a[7][7]){
    	ll c[7][7];
    	CLR(c,0);
    	for(int i=0;i<7;i++){
    		for(int j=0;j<7;j++){
    			for(int k=0;k<7;k++){
    				c[i][j]=(c[i][j]+a[i][k]*a[k][j]%mod)%mod;
    			}
    		}
    	}
    	memcpy(a,c,sizeof(c));
    }
    int main(){
    	int T;
    	cin>>T;
    	while(T--){
    		scanf("%lld%lld%lld",&n,&a,&b);
    		if(n==1){
    			printf("%lld
    ",a);
    		}else if(n==2){
    			printf("%lld
    ",b);
    		}else{
    			ll f[7]={b,a,81,27,9,3,1};
    			ll a[7][7]=
    			{{1,1,0,0,0,0,0},
    			 {2,0,0,0,0,0,0},
    			 {1,0,1,0,0,0,0},
    			 {0,0,4,1,0,0,0},
    			 {0,0,6,3,1,0,0},
    			 {0,0,4,3,2,1,0},
    			 {0,0,1,1,1,1,1}};
    			n-=2;
    			for(;n;n>>=1){
    				if(n&1)mul(f,a);
    				mulself(a);
    			}
    			printf("%lld
    ",f[0]);
    		}
    	}
    }

    Recursive sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3374    Accepted Submission(s): 1485


     

    Problem Description

    Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right. 

     

    Input

    The first line of input contains an integer t, the number of test cases. t test cases follow.
    Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.

     

    Output

    For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.

     

    Sample Input

    
     

    2 3 1 2 4 1 10

     

    Sample Output

    
     

    85 369

    Hint

    In the first case, the third number is 85 = 2*1十2十3^4. In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.

  • 相关阅读:
    d is less efficient than [0-9]
    How to navigate back to the last cursor position in Visual Studio Code?
    Is there a short-hand for nth root of x in Python 开n次方
    Disable source maps in Chrome DevTools
    Disable map files on SASS
    快速理解脏读,不可重复读,幻读
    AWR学习
    oracle set命令详解
    TimescaleDB上手和性能测试
    Centos 7.5 通过yum安装GNOME Desktop时出现:file /boot/efi/EFI/centos from install of fwupdate-efi-12-5.el7.centos.x86_64 conflicts with file from package grub2-common-1:2.02-0.65.el7.centos.2.noarch
  • 原文地址:https://www.cnblogs.com/mountaink/p/9536705.html
Copyright © 2011-2022 走看看