题目:
给出集合 [1,2,3,…,n]
,其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
说明:
- 给定 n 的范围是 [1, 9]。
- 给定 k 的范围是[1, n!]。
示例 1:
输入: n = 3, k = 3 输出: "213"
示例 2:
输入: n = 4, k = 9 输出: "2314"
解题思路:转自https://www.cnblogs.com/ariel-dreamland/p/9149577.html
这道题是让求出n个数字的第k个排列组合,由于其特殊性,我们不用将所有的排列组合的情况都求出来,然后返回其第k个,我们可以只求出第k个排列组合即可,那么难点就在于如何知道数字的排列顺序,可参见https://bangbingsyb.blogspot.com/2014/11/leetcode-permutation-sequence.html
首先我们要知道当n = 3时,其排列组合共有3! = 6种,当n = 4时,其排列组合共有4! = 24种,我们就以n = 4, k = 17的情况来分析,所有排列组合情况如下:
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412 <--- k = 17
3421
4123
4132
4213
4231
4312
4321
我们可以发现,每一位上1,2,3,4分别都出现了6次,当第一位上的数字确定了,后面三位上每个数字都出现了2次,当第二位也确定了,后面的数字都只出现了1次,当第三位确定了,那么第四位上的数字也只能出现一次,那么下面我们来看k = 17这种情况的每位数字如何确定,由于k = 17是转化为数组下标为16:
最高位可取1,2,3,4中的一个,每个数字出现3!= 6次,所以k = 16的第一位数字的下标为16 / 6 = 2,即3被取出
第二位此时从1,2,4中取一个,k = 16时,k' = 16 % (3!) = 4,而剩下的每个数字出现2!= 2次,所以第二数字的下标为4 / 2 = 2,即4被取出
第三位此时从1,2中去一个,k' = 4时,k'' = 4 % (2!) = 0,而剩下的每个数字出现1!= 1次,所以第三个数字的下标为 0 / 1 = 0,即1被取出
第四位是从2中取一个,k'' = 0时,k''' = 0 % (1!) = 0,而剩下的每个数字出现0!= 1次,所以第四个数字的下标为0 / 1= 0,即2被取出
那么我们就可以找出规律了
a1 = k / (n - 1)!
k1 = k
a2 = k1 / (n - 2)!
k2 = k1 % (n - 2)!
...
an-1 = kn-2 / 1!
kn-1 = kn-2 / 1!
an = kn-1 / 0!
kn = kn-1 % 0!
代码:
1 class Solution { 2 public: 3 string getPermutation(int n, int k) { 4 string num = "123456789"; 5 string ans; 6 vector<int> f(n, 1); 7 for(int i = 1; i < n; ++i) 8 f[i] = f[i-1] * i; 9 --k; 10 for(int i = n; i > 0; --i) { 11 int temp = k / f[i-1]; 12 k %= f[i-1]; 13 ans.push_back(num[temp]); 14 num.erase(temp, 1); 15 } 16 return ans; 17 } 18 };