zoukankan      html  css  js  c++  java
  • 【问题背景】
    zhx 和妹子们玩数数游戏。

    【问题描述】

    仅包含4或7的数被称为幸运数。一个序列的子序列被定义为从序列中删去若干个数, 剩下的数组成的新序列。两个子序列被定义为不同的当且仅当其中的元素在原始序列中的下标的集合不相等。对于一个长度为 N的序列,共有 2^N个不同的子序列。( 包含一个空序列)。一个子序列被称为不幸运的, 当且仅当其中不包含两个或两个以上相同的幸运数。对于一个给定序列,求其中长度恰好为 K 的不幸运子序列的个数, 答案mod 10^9+7 输出。

    【输入格式】

    第一行两个正整数 N, K, 表示原始序列的长度和题目中的 K。

    接下来一行 N 个整数 ai, 表示序列中第 i 个元素的值。

    【输出格式】

    仅一个数,表示不幸运子序列的个数。( mod 10^9+7)

    【样例输入】
    3 2
    1 1 1
    【样例输出】
    3


    【样例输入】
    4 2
    4 7 4 7
    【样例输出】
    4

    【样例解释】
    对于样例 1,每个长度为 2 的子序列都是符合条件的。

    对于样例 2,4个不幸运子序列元素下标分别为:{1, 2}, {3, 4}, {1, 4}, {2, 3}。注意下标集{1, 3}对应的子序列不是“不幸运”的, 因为它包含两个相同的幸运数4.


    【数据规模与约定】
    对于50%的数据, 1 ≤N ≤ 16。

    对于70%的数据, 1 ≤ N ≤ 1000, ai ≤ 10000。

    对于100%的数据, 1 ≤ N ≤ 100000,K ≤ N, 1 ≤ ai ≤10^9。

    【题解】

          考试的时候完全读错了题,直接当做字符串生成子序列来做,对整个题目的理解非常不到位。退一步说,就算注意到这不是个字符串的题,对乘法逆元的理解也很不到位,更不要说打出来了。一般来说,除了数学题之外的题起码还能走到正解附近,数学题就是完全不知道正解是什么啊……

           正解是打表处理幸运数字,用map处理出每个幸运数字出现的次数。在不幸运序列里每个幸运数字只可能出现0次或1次,所以幸运数字对答案的贡献可以用dp来解决。设dp[i][j]表示从前i个幸运数字中选j个的方案数,则dp方程为:

          dp[i][j] = dp[i − 1][j] + dp[i − 1][j − 1] ∗ C[i]

          c[i]是刚才用map处理出的幸运数字i在原序列中出现次数,dp[i][0]均初始化为1。设共出现了tot种幸运数字,非幸运数个数为d,则结果为:

          sigmaC(d,k-i)*dp[tot][i]  1<=i<=min(tot,k)

           这里的组合数非常大了,不能递推,又需要准确值,根据C(n,k)=n!/(n-k)!k!,预处理出足够大的阶乘,再求分母上阶乘关于10^9+7的逆元计算即可。数非常大,需要每一次都取模才能阻止溢出。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<map>
    #define ll long long
    using namespace std;
    int n,k,a[100010];
    int lu[1100]={4,7,44,47,74,77,444,447,474,477,744,747,774,777,4444,4447,4474,4477,4744,4747,4774,4777,7444,7447,7474,7477,7744,7747,7774,7777,44444,44447,44474,44477,44744,44747,44774,44777,47444,47447,47474,47477,47744,47747,47774,47777,74444,74447,74474,74477,74744,74747,74774,74777,77444,77447,77474,77477,77744,77747,77774,77777,444444,444447,444474,444477,444744,444747,444774,444777,447444,447447,447474,447477,447744,447747,447774,447777,474444,474447,474474,474477,474744,474747,474774,474777,477444,477447,477474,477477,477744,477747,477774,477777,744444,744447,744474,744477,744744,744747,744774,744777,747444,747447,747474,747477,747744,747747,747774,747777,774444,774447,774474,774477,774744,774747,774774,774777,777444,777447,777474,777477,777744,777747,777774,777777,4444444,4444447,4444474,4444477,4444744,4444747,4444774,4444777,4447444,4447447,4447474,4447477,4447744,4447747,4447774,4447777,4474444,4474447,4474474,4474477,4474744,4474747,4474774,4474777,4477444,4477447,4477474,4477477,4477744,4477747,4477774,4477777,4744444,4744447,4744474,4744477,4744744,4744747,4744774,4744777,4747444,4747447,4747474,4747477,4747744,4747747,4747774,4747777,4774444,4774447,4774474,4774477,4774744,4774747,4774774,4774777,4777444,4777447,4777474,4777477,4777744,4777747,4777774,4777777,7444444,7444447,7444474,7444477,7444744,7444747,7444774,7444777,7447444,7447447,7447474,7447477,7447744,7447747,7447774,7447777,7474444,7474447,7474474,7474477,7474744,7474747,7474774,7474777,7477444,7477447,7477474,7477477,7477744,7477747,7477774,7477777,7744444,7744447,7744474,7744477,7744744,7744747,7744774,7744777,7747444,7747447,7747474,7747477,7747744,7747747,7747774,7747777,7774444,7774447,7774474,7774477,7774744,7774747,7774774,7774777,7777444,7777447,7777474,7777477,7777744,7777747,7777774,7777777,44444444,44444447,44444474,44444477,44444744,44444747,44444774,44444777,44447444,44447447,44447474,44447477,44447744,44447747,44447774,44447777,44474444,44474447,44474474,44474477,44474744,44474747,44474774,44474777,44477444,44477447,44477474,44477477,44477744,44477747,44477774,44477777,44744444,44744447,44744474,44744477,44744744,44744747,44744774,44744777,44747444,44747447,44747474,44747477,44747744,44747747,44747774,44747777,44774444,44774447,44774474,44774477,44774744,44774747,44774774,44774777,44777444,44777447,44777474,44777477,44777744,44777747,44777774,44777777,47444444,47444447,47444474,47444477,47444744,47444747,47444774,47444777,47447444,47447447,47447474,47447477,47447744,47447747,47447774,47447777,47474444,47474447,47474474,47474477,47474744,47474747,47474774,47474777,47477444,47477447,47477474,47477477,47477744,47477747,47477774,47477777,47744444,47744447,47744474,47744477,47744744,47744747,47744774,47744777,47747444,47747447,47747474,47747477,47747744,47747747,47747774,47747777,47774444,47774447,47774474,47774477,47774744,47774747,47774774,47774777,47777444,47777447,47777474,47777477,47777744,47777747,47777774,47777777,74444444,74444447,74444474,74444477,74444744,74444747,74444774,74444777,74447444,74447447,74447474,74447477,74447744,74447747,74447774,74447777,74474444,74474447,74474474,74474477,74474744,74474747,74474774,74474777,74477444,74477447,74477474,74477477,74477744,74477747,74477774,74477777,74744444,74744447,74744474,74744477,74744744,74744747,74744774,74744777,74747444,74747447,74747474,74747477,74747744,74747747,74747774,74747777,74774444,74774447,74774474,74774477,74774744,74774747,74774774,74774777,74777444,74777447,74777474,74777477,74777744,74777747,74777774,74777777,77444444,77444447,77444474,77444477,77444744,77444747,77444774,77444777,77447444,77447447,77447474,77447477,77447744,77447747,77447774,77447777,77474444,77474447,77474474,77474477,77474744,77474747,77474774,77474777,77477444,77477447,77477474,77477477,77477744,77477747,77477774,77477777,77744444,77744447,77744474,77744477,77744744,77744747,77744774,77744777,77747444,77747447,77747474,77747477,77747744,77747747,77747774,77747777,77774444,77774447,77774474,77774477,77774744,77774747,77774774,77774777,77777444,77777447,77777474,77777477,77777744,77777747,77777774,77777777,444444444,444444447,444444474,444444477,444444744,444444747,444444774,444444777,444447444,444447447,444447474,444447477,444447744,444447747,444447774,444447777,444474444,444474447,444474474,444474477,444474744,444474747,444474774,444474777,444477444,444477447,444477474,444477477,444477744,444477747,444477774,444477777,444744444,444744447,444744474,444744477,444744744,444744747,444744774,444744777,444747444,444747447,444747474,444747477,444747744,444747747,444747774,444747777,444774444,444774447,444774474,444774477,444774744,444774747,444774774,444774777,444777444,444777447,444777474,444777477,444777744,444777747,444777774,444777777,447444444,447444447,447444474,447444477,447444744,447444747,447444774,447444777,447447444,447447447,447447474,447447477,447447744,447447747,447447774,447447777,447474444,447474447,447474474,447474477,447474744,447474747,447474774,447474777,447477444,447477447,447477474,447477477,447477744,447477747,447477774,447477777,447744444,447744447,447744474,447744477,447744744,447744747,447744774,447744777,447747444,447747447,447747474,447747477,447747744,447747747,447747774,447747777,447774444,447774447,447774474,447774477,447774744,447774747,447774774,447774777,447777444,447777447,447777474,447777477,447777744,447777747,447777774,447777777,474444444,474444447,474444474,474444477,474444744,474444747,474444774,474444777,474447444,474447447,474447474,474447477,474447744,474447747,474447774,474447777,474474444,474474447,474474474,474474477,474474744,474474747,474474774,474474777,474477444,474477447,474477474,474477477,474477744,474477747,474477774,474477777,474744444,474744447,474744474,474744477,474744744,474744747,474744774,474744777,474747444,474747447,474747474,474747477,474747744,474747747,474747774,474747777,474774444,474774447,474774474,474774477,474774744,474774747,474774774,474774777,474777444,474777447,474777474,474777477,474777744,474777747,474777774,474777777,477444444,477444447,477444474,477444477,477444744,477444747,477444774,477444777,477447444,477447447,477447474,477447477,477447744,477447747,477447774,477447777,477474444,477474447,477474474,477474477,477474744,477474747,477474774,477474777,477477444,477477447,477477474,477477477,477477744,477477747,477477774,477477777,477744444,477744447,477744474,477744477,477744744,477744747,477744774,477744777,477747444,477747447,477747474,477747477,477747744,477747747,477747774,477747777,477774444,477774447,477774474,477774477,477774744,477774747,477774774,477774777,477777444,477777447,477777474,477777477,477777744,477777747,477777774,477777777,744444444,744444447,744444474,744444477,744444744,744444747,744444774,744444777,744447444,744447447,744447474,744447477,744447744,744447747,744447774,744447777,744474444,744474447,744474474,744474477,744474744,744474747,744474774,744474777,744477444,744477447,744477474,744477477,744477744,744477747,744477774,744477777,744744444,744744447,744744474,744744477,744744744,744744747,744744774,744744777,744747444,744747447,744747474,744747477,744747744,744747747,744747774,744747777,744774444,744774447,744774474,744774477,744774744,744774747,744774774,744774777,744777444,744777447,744777474,744777477,744777744,744777747,744777774,744777777,747444444,747444447,747444474,747444477,747444744,747444747,747444774,747444777,747447444,747447447,747447474,747447477,747447744,747447747,747447774,747447777,747474444,747474447,747474474,747474477,747474744,747474747,747474774,747474777,747477444,747477447,747477474,747477477,747477744,747477747,747477774,747477777,747744444,747744447,747744474,747744477,747744744,747744747,747744774,747744777,747747444,747747447,747747474,747747477,747747744,747747747,747747774,747747777,747774444,747774447,747774474,747774477,747774744,747774747,747774774,747774777,747777444,747777447,747777474,747777477,747777744,747777747,747777774,747777777,774444444,774444447,774444474,774444477,774444744,774444747,774444774,774444777,774447444,774447447,774447474,774447477,774447744,774447747,774447774,774447777,774474444,774474447,774474474,774474477,774474744,774474747,774474774,774474777,774477444,774477447,774477474,774477477,774477744,774477747,774477774,774477777,774744444,774744447,774744474,774744477,774744744,774744747,774744774,774744777,774747444,774747447,774747474,774747477,774747744,774747747,774747774,774747777,774774444,774774447,774774474,774774477,774774744,774774747,774774774,774774777,774777444,774777447,774777474,774777477,774777744,774777747,774777774,774777777,777444444,777444447,777444474,777444477,777444744,777444747,777444774,777444777,777447444,777447447,777447474,777447477,777447744,777447747,777447774,777447777,777474444,777474447,777474474,777474477,777474744,777474747,777474774,777474777,777477444,777477447,777477474,777477477,777477744,777477747,777477774,777477777,777744444,777744447,777744474,777744477,777744744,777744747,777744774,777744777,777747444,777747447,777747474,777747477,777747744,777747747,777747774,777747777,777774444,777774447,777774474,777774477,777774744,777774747,777774774,777774777,777777444,777777447,777777474,777777477,777777744,777777747,777777774,777777777};
    map<int,int> ma;
    int ck[1100],ge,d;
    ll ans,mod=1000000007,f[1100][1100],jc[100010];
    ll e_gcd(ll n,ll m,ll &x,ll &y)
    {
         if(m==0)
         {
            x=1;
            y=0;
            return n;
         }
         ll an=e_gcd(m,n%m,x,y);
         ll t=x;
         x=y;
         y=t-n/m*y;
         return an;
    }
    ll ny(ll n,ll m)
    {
         ll x,y;
         ll gcd=e_gcd(n,m,x,y);
         x*=1/gcd;
         m=abs(m);
         ll jg=x%m;
         if(jg<=0)
           jg+=m;
         return jg;
    }
    void dp()
    {
         for(int i=0;i<=ge;i++) f[i][0]=1;
         for(int i=1;i<=ge;i++)
           for(int j=1;j<=i;j++)
             f[i][j]=(f[i-1][j]+f[i-1][j-1]*ck[i])%mod;
    }
    int main()
    {
        scanf("%d%d",&n,&k);
        for(int i=0;i<1022;i++)
            ma[lu[i]]=0;
        for(int i=1;i<=n;i++)
        {
           scanf("%d",&a[i]);
           if(ma.count(a[i]))
             ma[a[i]]=ma[a[i]]+1;
        }
        d=n;
        for(int i=0;i<1022;i++)
          if(ma[lu[i]]!=0)
          {
            ge++;
            ck[ge]=ma[lu[i]];
            d-=ck[ge];
          }
        jc[0]=jc[1]=1;
        dp();
        for(int i=2;i<=d;i++)
          jc[i]=(i*jc[i-1])%mod;
        for(int i=0;i<=ge&&i<=k;i++)
          ans=(ans+((jc[d]*ny(jc[d-k+i],mod))%mod*ny(jc[k-i],mod)%mod)*f[ge][i])%mod;
        printf("%lld",ans%mod);
        return 0;
    }
    lucky
  • 相关阅读:
    POJ2778 DNA Sequence AC自动机上dp
    codeforces732F Tourist Reform 边双联通分量
    codeforces786B Legacy 线段树优化建图
    洛谷P3588 PUS 线段树优化建图
    codeforces1301D Time to Run 模拟
    codeforces1303B National Project 二分或直接计算
    codeforces1303C Perfect Keyboard 模拟或判断欧拉路
    codeforces1303D Fill The Bag 二进制应用+贪心
    python之路——使用python操作mysql数据库
    python之路——mysql索引原理
  • 原文地址:https://www.cnblogs.com/moyiii-/p/7287246.html
Copyright © 2011-2022 走看看