zoukankan      html  css  js  c++  java
  • POJ 3020 Antenna Placement 最大匹配

    Antenna Placement
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6445   Accepted: 3182

    Description

    The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.

    Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?



    Input

    On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

    Output

    For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

    Sample Input

    2
    7 9
    ooo**oooo
    **oo*ooo*
    o*oo**o**
    ooooooooo
    *******oo
    o*o*oo*oo
    *******oo
    10 1
    *
    *
    *
    o
    *
    *
    *
    *
    *
    *
    

    Sample Output

    17
    5


    无向二分图的最小路径覆盖 = 顶点数 – 最大二分匹配数/2

    #include<iostream>
    #include<cstring>
    using namespace std;
    
    #define M 405
    int a[M][M],b[M][M];
    int p;
    int v[M],f[M];
    int w[4][2]={0,1,0,-1,1,0,-1,0};
    
    int fi(int x)
    {
    	for(int i=1;i<=p;i++)
    		if(!v[i] && b[x][i])
    		{
    			v[i]=1;
    			if(!f[i] || fi(f[i]))
    			{
    				f[i]=x;
    				return 1;
    			}
    		}
    	return 0;
    }
    
    int main()
    {
    	int T;
    	cin>>T;getchar();
    	while(T--)
    	{		
    		memset(a,0,sizeof(a));
    		memset(b,0,sizeof(b));
    		memset(f,0,sizeof(f));
    		int n,m;
    		cin>>n>>m;
    		int i,j;
    		char c;
    
    		p=0;
    		for(i=1;i<=n;i++)
    		{
    			for(j=1;j<=m;j++)
    			{
    				cin>>c;
    				if(c=='*')
    					a[i][j]=++p;
    			}
    			getchar();
    		}
    
    		for(i=1;i<=n;i++)
    			for(j=1;j<=m;j++)
    				if(a[i][j])   for(int q=0;q<4;q++)
    				{
    					int x=i+w[q][0];
    					int y=j+w[q][1];
    					if(a[x][y])
    						b[a[i][j]][a[x][y]]=1;
    				}
    
    		int sum=0;
    		for(i=1;i<=p;i++)
    		{
    			memset(v,0,sizeof(v));
    			if(fi(i))   sum++;
    		}
    		
    		cout<<p-sum/2<<endl;
    	}
    
    	return 0;
    }
    


  • 相关阅读:
    git 学习笔记
    单选框和复选框的样式修改
    es6常用方法
    js混杂笔记
    Entity Framework 学习第一天
    sublime text2的插件熟悉
    近况
    thinkphp ,进行关联模型的时候出现的问题,版本是3.2
    上传图片的权限问题
    今天学习了下,如何破解wifi
  • 原文地址:https://www.cnblogs.com/mqxnongmin/p/10960669.html
Copyright © 2011-2022 走看看