zoukankan      html  css  js  c++  java
  • 【转】Graphics.DrawCurve的算法

    public static class Spline
        {
            [System.Diagnostics.DebuggerDisplay("({X},{Y})")]
            public partial struct Vec2
            {
                public float X, Y;
    
                public Vec2(float x, float y) { this.X = x; this.Y = y; }
    
                public static implicit operator PointF(Vec2 v) { return new PointF(v.X, v.Y); }
    
                public static implicit operator Vec2(PointF p) { return new Vec2(p.X, p.Y); }
    
                public static Vec2 operator +(Vec2 v1, Vec2 v2) { return new Vec2(v1.X + v2.X, v1.Y + v2.Y); }
    
                public static Vec2 operator -(Vec2 v1, Vec2 v2) { return new Vec2(v1.X - v2.X, v1.Y - v2.Y); }
    
                public static Vec2 operator *(Vec2 v, float f) { return new Vec2(v.X * f, v.Y * f); }
    
                public static Vec2 operator /(Vec2 v, float f) { return new Vec2(v.X / f, v.Y / f); }
    
            }
        
           /// <summary>
            /// '贝塞尔'内插。结果不包括头尾点
            /// </summary>
         public static PointF[] InterpolateBezier(PointF p0, PointF p1, PointF p2, PointF p3, int samples)
            {
                PointF[] result = new PointF[samples];
                for (int i = 0; i < samples; i++)
                {
                    float t = (i + 1) / (samples + 1.0f);
                    result[i] =
                        (Vec2)p0 * (1 - t) * (1 - t) * (1 - t) +
                        (Vec2)p1 * (3 * (1 - t) * (1 - t) * t) +
                        (Vec2)p2 * (3 * (1 - t) * t * t) +
                        (Vec2)p3 * (t * t * t);
                }
                return result;
            }
    
            public static PointF[] InterpolateCardinalSpline(PointF p0, PointF p1, PointF p2, PointF p3, int samples)
            {
                const float tension = 0.5f;
                Vec2 u = ((Vec2)p2 - (Vec2)p0) * (tension / 3) + p1;
                Vec2 v = ((Vec2)p1 - (Vec2)p3) * (tension / 3) + p2;
                return InterpolateBezier(p1, u, v, p2, samples);
            }
        

          /// <summary>
          /// '基数样条'内插法。 points为通过点,samplesInSegment为两个样本点之间的内插数量。
          /// </summary>

    public static PointF[] CardinalSpline(PointF[] points, int samplesInSegment)
            {
                List<PointF> result = new List<PointF>();
                for (int i = 0; i < points.Length - 1; i++)
                {
                    result.Add(points[i]);
                    result.AddRange(InterpolateCardinalSpline(
                        points[Math.Max(i - 1, 0)],
                        points[i],
                        points[i + 1],
                        points[Math.Min(i + 2, points.Length - 1)],
                        samplesInSegment
                        ));
                }
                result.Add(points[points.Length - 1]);
                return result.ToArray();
            }
        }

    测试方法

    public partial class Form1 : Form
    {
        protected override void OnPaint(PaintEventArgs e)
        {
            PointF[] ps = {new PointF(50,50), new PointF(100, 80), new PointF(120, 10), new PointF(200,100)};
            // 系统的Graphics.DrawCurve,桃色
            e.Graphics.DrawCurve(new Pen(Brushes.PeachPuff, 5), ps);
            // 自己取样,蓝色
            e.Graphics.DrawLines(Pens.Blue, Spline.CardinalSpline(ps, 10));
        }
    }

    原文地址:https://blog.csdn.net/zheng558888/article/details/15816009

  • 相关阅读:
    实现Promise的first等各种变体
    js打乱数组的实战应用
    Vue单页面中进行业务数据的上报
    如何实现一个楼中楼的评论系统
    vue实现对表格数据的增删改查
    用CSS3实现无限循环的无缝滚动
    使用vue实现tab操作
    redis事务与关系型数据库事务比较
    优先队列原理与实现
    MySQL排序原理与案例分析
  • 原文地址:https://www.cnblogs.com/mqxs/p/9049361.html
Copyright © 2011-2022 走看看