zoukankan      html  css  js  c++  java
  • 1024 Palindromic Number (25)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (<= 10^10^) is the initial numer and K (<= 100) is the maximum number of steps. The numbers are separated by a space.

    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

    Sample Input 1:

    67 3
    

    Sample Output 1:

    484
    2
    

    Sample Input 2:

    69 3
    

    Sample Output 2:

    1353
    3


    用用long类型运行的时候,会有两个测试点不能通过, 用string来进行运算
     1 #include<iostream>
     2 using namespace std;
     3 int main(){
     4   long long n, k, i, copy, m;
     5   cin>>n>>k;
     6   for(i=0; i<k; i++){
     7     copy=n; m=0;
     8     while(n){
     9       m = m*10+(n%10);
    10       n/=10;
    11     }
    12     if(m==copy){
    13       cout<<m<<endl<<i;
    14       break;
    15     }
    16     n = m+copy;
    17     if(i==k-1) cout<<n<<endl<<k;
    18   }
    19   return 0;
    20 }
     1 #include<iostream>
     2 #include<string>
     3 #include<algorithm>
     4 using namespace std;
     5 string add(string s, string t){
     6   int len = s.size(), carry=0;
     7   for(int i=len-1; i>=0; i--){
     8     s[i] = s[i]+t[i]-'0'+carry;
     9     if(s[i]>'9') {carry=1; s[i]=char(s[i]-10);}
    10     else carry=0;
    11   }
    12   if(carry==1) s='1'+s;
    13   return s;
    14 }
    15 int main(){
    16   string s;
    17   int k, i;
    18   cin>>s>>k;
    19   for(i=0; i<k; i++){
    20     string t = s;
    21     reverse(t.begin(), t.end());
    22     if(t==s) {cout<<t<<endl<<i; break;}
    23     s = add(s, t);
    24     if(i==k-1) cout<<s<<endl<<k;
    25   }
    26   return 0;
    27 }
    有疑惑或者更好的解决方法的朋友,可以联系我,大家一起探讨。qq:1546431565
  • 相关阅读:
    HDU 2196 Computer (树形DP)
    HDU 4756 Install Air Conditioning (MST+树形DP)
    HDU 4126 Genghis Khan the Conqueror (树形DP+MST)
    HDU 4714 Tree2cycle (树形DP)
    HDU 1159 Common Subsequence (LCS)
    HDU 2159 FATE (二维背包)
    HDU 2602 Bone Collector (01背包DP)
    HDU 5918 Sequence I (KMP)
    关于一些逗逼函数//atoi,itoa,strtok,strupr,
    二叉树—-1(No.9HN省赛小题)
  • 原文地址:https://www.cnblogs.com/mr-stn/p/9155048.html
Copyright © 2011-2022 走看看