zoukankan      html  css  js  c++  java
  • PAT 1007 Maximum Subsequence Sum

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4

     1 #include<iostream>
     2 #include<vector>
     3 using namespace std;
     4 int max(int a, int b){return a>b ? a : b;}
     5 int main(){
     6   int n, i;
     7   scanf("%d", &n);
     8   vector<int> dp(n+1, 0), v(n+1);
     9   for(i=0; i<n; i++) scanf("%d", &v[i]);
    10   int sum=0, begin=0, end=0, maxn=-99999999, last=0;
    11   for(i=0; i<n; i++){
    12     sum += v[i];
    13     dp[i] = max(v[i], sum);
    14     if(sum<0){
    15       sum=0;
    16       last = i+1;
    17     }
    18     if(dp[i]>maxn){
    19       maxn=dp[i];
    20       end = i;
    21       begin = last;
    22     }
    23   }
    24   if(maxn>=0) printf("%d %d %d
    ", maxn, v[begin], v[end]);
    25   else printf("%d %d %d
    ", 0, v[0], v[n-1]);
    26   return 0;
    27 }
  • 相关阅读:
    使用window.postMessage实现跨域通信
    关于angularJS绑定数据时自动转义html标签
    细小知识点
    理解Java多态
    Java自定义类加载器与双亲委派模型详解
    python之5种数据类型7种运算符
    Innodb中的事务隔离级别实现原理
    Redis分布式锁
    leetcode series:Two Sum
    设计模式六大原则(转)
  • 原文地址:https://www.cnblogs.com/mr-stn/p/9578799.html
Copyright © 2011-2022 走看看