zoukankan      html  css  js  c++  java
  • PAT 1007 Maximum Subsequence Sum

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4

     1 #include<iostream>
     2 #include<vector>
     3 using namespace std;
     4 int max(int a, int b){return a>b ? a : b;}
     5 int main(){
     6   int n, i;
     7   scanf("%d", &n);
     8   vector<int> dp(n+1, 0), v(n+1);
     9   for(i=0; i<n; i++) scanf("%d", &v[i]);
    10   int sum=0, begin=0, end=0, maxn=-99999999, last=0;
    11   for(i=0; i<n; i++){
    12     sum += v[i];
    13     dp[i] = max(v[i], sum);
    14     if(sum<0){
    15       sum=0;
    16       last = i+1;
    17     }
    18     if(dp[i]>maxn){
    19       maxn=dp[i];
    20       end = i;
    21       begin = last;
    22     }
    23   }
    24   if(maxn>=0) printf("%d %d %d
    ", maxn, v[begin], v[end]);
    25   else printf("%d %d %d
    ", 0, v[0], v[n-1]);
    26   return 0;
    27 }
  • 相关阅读:
    面向对象的程序设计-2-创建对象
    面向对象的程序设计-1-理解对象
    react组件的生命周期
    react-router 组件式配置与对象式配置小区别
    mobx @computed的解读
    十分钟介绍mobx与react
    less学习
    git-简单流程(学习笔记)
    几种视频编码器的编译及使用方法
    一位程序员工作10年总结的13个忠告
  • 原文地址:https://www.cnblogs.com/mr-stn/p/9578799.html
Copyright © 2011-2022 走看看