zoukankan      html  css  js  c++  java
  • Common Subsequence (动态规划)

    最长公共子序列

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.


    Input The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. Output For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    题解:

    1.c[i][j]代表Xi和Yi的最长公共子序列

    2.也就是同时遍历X和Y俩个字符串,i 遍历 X, j 遍历 Y;

    3.若Xi == Yj,c[i][j] = c[i-1][j-1] + 1;

    4.若Xi != Yj, c[i][j] = max(c[i][j-1], c[i-1][j]);

     1 #include<iostream>
     2 #include<cstring>
     3 #include<algorithm>
     4 using namespace std;
     5 
     6 int num[1000];
     7 int maxlen[1000];
     8 int main() {
     9     int N;
    10     cin >> N;
    11     for(int i = 0; i < N; i++) {
    12         cin >> num[i];
    13         maxlen[i] = 1;
    14     }
    15     //以第i个整数为终点,求其的最长子序列,遍历0-i的整数,若小于num[i],则用maxlen[j]+1与maxlen[i]取最大值赋值给maxlen[j] 
    16     for(int i = 1; i < N; i++) {
    17         for(int j = 0; j < i; j++) {
    18             if(num[i] > num[j]) {
    19                 maxlen[i] = max(maxlen[i], maxlen[j] + 1);
    20             }
    21         }
    22     }
    23     
    24     cout << * max_element(maxlen, maxlen + N);
    25     return 0;
    26 } 
  • 相关阅读:
    Lambda表达式详解 (转)
    usb驱动开发21之驱动生命线
    usb驱动开发18之设备生命线
    usb驱动开发17之设备生命线
    usb驱动开发16之设备生命线
    usb驱动开发15之设备生命线
    usb驱动开发14之设备生命线
    usb驱动开发13之设备生命线
    usb驱动开发12之设备生命线
    usb驱动开发11之设备生命线
  • 原文地址:https://www.cnblogs.com/mr-wei977955490/p/15367595.html
Copyright © 2011-2022 走看看