zoukankan      html  css  js  c++  java
  • kaggle 实战 (1): PCA + KNN 手写数字识别

    本文采用PCA+KNN的方法进行kaggle手写数字识别,训练数据共有42000行,每行代表一幅数字图片,共有784列(一副数字图像是28*28像素,将一副图像展开为一行即784),更多关于Digit Recognizer项目的介绍https://www.kaggle.com/c/digit-recognizer

    由于训练数据量太大,直接采用KNN非常耗时,采用PCA降维的方法,选取25个维度,跑完全部数据只需200秒左右。

    加载package

    # This Python 3 environment comes with many helpful analytics libraries installed
    # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
    # For example, here's several helpful packages to load in 
    
    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
    import matplotlib.pyplot as plt # import de Matplotlib
    from IPython.display import display
    from PIL import Image
    # Input data files are available in the "../input/" directory.
    # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
    
    import os
    print(os.listdir("../input"))
    
    # Any results you write to the current directory are saved as output.
    

    read data

    train=pd.read_csv('../input/train.csv')
    train.shape
    
    submission = pd.read_csv('../input/test.csv')
    
    test=pd.read_csv('../input/test.csv')
    test.shape
    
    y_train = train['label']
    y_train.head()
    
    x_train=train.drop(['label'], axis=1)
    x_train.head() # affiche le tableau ci-dessous
    
    X_submission =test
    

    PCA 降维探索

    pca = PCA(200)
    pca_full = pca.fit(x_train)
    
    plt.plot(np.cumsum(pca_full.explained_variance_ratio_))
    plt.xlabel('# of components')
    plt.ylabel('Cumulative explained variance')
    

    在这里插入图片描述

    选择50维度, 拆分数据为训练集,测试机

    pca = PCA(n_components=50)
    X_train_transformed = pca.fit_transform(x_train)
    X_submission_transformed = pca.transform(x_test)
    from sklearn.model_selection import train_test_split
    
    X_train_pca, X_test_pca, y_train_pca, y_test_pca = train_test_split(X_train_transformed, y_train, test_size=0.2, random_state=13)
    
    

    KNN PCA降维和K值筛选

    components = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
    neighbors = [1, 2, 3, 4, 5, 6, 7]
    
    scores = np.zeros( (components[len(components)-1]+1, neighbors[len(neighbors)-1]+1 ) )
    
    from sklearn.neighbors import KNeighborsClassifier
    
    for component in components:
        for n in neighbors:
            knn = KNeighborsClassifier(n_neighbors=n)
            knn.fit(X_train_pca[:,:component], y_train_pca)
            score = knn.score(X_test_pca[:,:component], y_test_pca)
            #predict = knn.predict(X_test_pca[:,:component])
            scores[component][n] = score
            
            print('Components = ', component, ', neighbors = ', n,', Score = ', score)   
    

    在这里插入图片描述
    k 值的意义:
    在这里插入图片描述

    分析k & 维度 vs 精度

    scores = np.reshape(scores[scores != 0], (len(components), len(neighbors)))
    
    x = [0, 1, 2, 3, 4, 5, 6]
    y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    plt.rcParams["axes.grid"] = False
    
    fig, ax = plt.subplots()
    plt.imshow(scores, cmap='hot', interpolation='none', vmin=.90, vmax=1)
    plt.xlabel('neighbors')
    plt.ylabel('components')
    plt.xticks(x, neighbors)
    plt.yticks(y, components)
    plt.title('KNN score heatmap')
    
    plt.colorbar()
    plt.show()
    

    在这里插入图片描述

    预测

    knn = KNeighborsClassifier(n_neighbors=5)
    knn.fit(X_train_pca[:, :35], y_train_pca)
    
    predict_labels = knn.predict(X_submission_transformed[:, :35])
    

    对于PCA维度的选取:在多次尝试后,采用35个维度,效果较好。需要注意的是,PCA处理后的训练数据和原始数据是不同的,所以采用PCA处理数据后,并不是选取的维度越多精确度就越好。k 选5 可以达到很好效果

    生成提交文件

    Submission = pd.DataFrame({
            "ImageId": range(1, predict_labels.shape[0]+1),
            "Label": predict_labels
        })
    
    Submission.to_csv("KnnMnistSubmission.csv", index=False)
    
    Submission.head(5)
    
  • 相关阅读:
    【Java】Java中的集合框架、泛型
    【Java】Java中日期获取、数值精度、异常处理
    【Java】包装类、及字符序列CharSequence接口
    【微服务】Docker环境安装及卸载教程-持续更新中
    【Java】Stream流式编程实战
    【Java】Lambda表达式详解及实战
    【Java】Java中I/O流使用及详解
    加入博客园的第八个月
    Structs复习 Structs标签
    Structs复习 OGNL
  • 原文地址:https://www.cnblogs.com/mrcharles/p/11879756.html
Copyright © 2011-2022 走看看