zoukankan      html  css  js  c++  java
  • [HNOI2004]宠物收养场

    嘟嘟嘟


    看完题,思路一秒就出来了:建两棵平衡树,分别维护宠物和领养者。然后就是正常的插入,找前驱后继,删除操作了。
    然后旁边的lba巨佬说只用建一棵就行,如果宠物多了就维护宠物,否则维护领养者。
    总而言之这就是一道板儿题。


    然而我刚学(splay)啊!
    于是一上午就这么过去了。
    旋转,插入,找前驱后继这些操作就不说了,可以看我昨天的博客。主要是删除操作困扰了我半天。
    啊不对,找前驱后继得说一下。
    拿找前驱为例。众所周知,我们先找(x),然后把他旋到根,这样的话前驱就是先走一步左儿子,然后右儿子一直走下去。
    但是这道题(x)可能不在平衡树里。于是我就懵了,想了半天都不知道怎么改进,最后还是拿(bst)的找法去写的,然而写完后就发现删除操作写不了了。因为删除我需要(x)的前驱和后继的节点编号,但是按(bst)的写法只能返回值,而没有节点编号。
    因此最后我还不得不回来看(lba)的代码。然而看了半天我也没看出来他怎么处理这一点的,问他他说没考虑到这一点,但这样的话样例怎么解释呀!在各种磨叽后我终于看到了百行代码中的一条不寻常的特判:就是在找前驱的时候,旋转完如果根的值比(x)小就直接返回!然后我想了想,发现奥秘在这里:查找的时候如果(x)不存在,找到的是离(x)最近的数(y),然后把他旋了上去,但不知道比(x)大还是比(x)小。这样找前驱的时候,如果根节点(就是(y))比(x)小,说明(y)(x)小,直接返回(y)。后继同理。
    嗯,就是这样。


    然后叨叨一下删除。
    删除权值为(x)的节点,先找(x)的前驱(a)和后继(b),然后把(a)旋到根上,再把(b)旋到(a)的右儿子上。这样(x)就一定是(b)的左儿子,而且(b)的左子树只有(x)。所以如果(x)有多个,就(cnt--),否则把(b)的左子树变为(0)
    代码

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define rg register
    typedef long long ll;
    typedef double db;
    const int INF = 2147483647;
    const db eps = 1e-8;
    const int maxn = 8e4 + 5;
    const int mod = 1000000;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n, tot = 0;
    ll ans = 0;
    
    struct Tree
    {
      int ch[2], fa;
      int cnt, siz; ll val;
    }t[maxn];
    int root, ncnt = 0;
    
    void pushup(int now)
    {
      t[now].siz = t[t[now].ch[0]].siz + t[t[now].ch[1]].siz + t[now].cnt;
    }
    void rotate(int x)
    {
      int y = t[x].fa, z = t[y].fa, k = (t[y].ch[1] == x);
      t[z].ch[t[z].ch[1] == y] = x; t[x].fa = z;
      t[y].ch[k] = t[x].ch[k ^ 1]; t[t[x].ch[k ^ 1]].fa = y;
      t[x].ch[k ^ 1] = y; t[y].fa = x;
      pushup(x); pushup(y);
    }
    void splay(int x, int s)
    {
      while(t[x].fa != s)
        {
          int y = t[x].fa, z = t[y].fa;
          if(z != s)
    	{
    	  if((t[z].ch[0] == y) ^ (t[y].ch[0] == x)) rotate(x);
    	  else rotate(y);
    	}
          rotate(x);
        }
      if(!s) root = x;
    }
    void insert(int x)
    {
      int now = root, f = 0;
      while(now && t[now].val != x) f = now, now = t[now].ch[x > t[now].val];
      if(now) t[now].cnt++;
      else
        {
          now = ++ncnt;
          t[now].ch[0] = t[now].ch[1] = 0;
          if(f) t[f].ch[x > t[f].val] = now;
          t[now].fa = f;
          t[now].cnt = t[now].siz = 1;
          t[now].val = x;
        }
      splay(now, 0);
    }
    void find(int x)
    {
      int now = root;
      if(!now) return;
      while(t[now].ch[x > t[now].val] && t[now].val != x) now = t[now].ch[x > t[now].val];
      splay(now, 0);
    }
    int pre(int x)
    {
      find(x);  
      if(t[root].val < x) return root;
      int now = t[root].ch[0];
      while(t[now].ch[1]) now = t[now].ch[1];
      return now;
    }
    int nxt(int x)
    {
      find(x);
      if(t[root].val > x) return root;
      int now = t[root].ch[1];
      while(t[now].ch[0]) now = t[now].ch[0];
      return now;
    }
    void del(int x)
    {
      int a = pre(x), b = nxt(x);
      splay(a, 0); splay(b, a);
      int k = t[b].ch[0];
      if(t[k].cnt > 1) t[k].cnt--;
      else t[b].ch[0] = 0;
    }
    
    void _Debug(int now)
    {
      if(!now) return;
      printf("()()%d %lld zuo:%lld you:%lld
    ", now, t[now].val, t[t[now].ch[0]].val, t[t[now].ch[1]].val);
      _Debug(t[now].ch[0]); _Debug(t[now].ch[1]);
    }
    
    int main()
    {
      n = read();
      insert(INF); insert(-INF);
      for(int i = 1; i <= n; ++i)
        {
          int op = read(); ll x = read();
          if(!op)
    	{
    	  if(tot >= 0) insert(x);
    	  else
    	    {
    	      ll a = t[pre(x)].val, b = t[nxt(x)].val;
    	      if(x - a <= b - x) ans = (ans + x - a) % mod, del(a);
    	      else ans = (ans + b - x) % mod, del(b);
    	    }
    	  tot++;
    	}
          else
    	{
    	  if(tot <= 0) insert(x);
    	  else
    	    {
    	      //_Debug(root);
    	      ll a = t[pre(x)].val, b = t[nxt(x)].val;
    	      //puts("------");
    	      //_Debug(root);
    	      if(x - a <= b - x) ans = (ans + x - a) % mod, del(a);
    	      else ans = (ans + b - x) % mod, del(b);
    	    }
    	  tot--;
    	}
        }
      write(ans), enter;
      return 0;
    }
    
  • 相关阅读:
    QueryRunner查询返回值为int的数据
    c3p0连接池获取数据库连接
    javascript-文件File转换成base64格式
    php 判断是否手机端还是pc端
    MySql -- 数据结构
    tp5--路由的使用方法(深入)
    tp5--路由的使用(初级)
    tp5--开发规范
    二维数组排序 按某个字段排序
    文件记录网页访问量
  • 原文地址:https://www.cnblogs.com/mrclr/p/10048835.html
Copyright © 2011-2022 走看看